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1 INTROBUCTION

This paper presents briefly the auditory-based wavelet representation (AWR). The adap-
tation of an auditory frequency scale to the wavelet representation was proposed in d’Ales-
sandro & Beautemps [3] and discussed for speech in d” Alessandro & Beautemps [2]; a speech
representation model, closely related, to AWR was proposed'in d’ Alessandro [1]. The reader
is referred to these papers for more information and references on these methods.

The wavelet representation is a linear nonparametric-representation method, closely re-
lated to linear filtering. It provides a local time-frequency description of the signal: at the
analysis stage, wavelet coefficients are obtained by correlation between the wavelets and the
signal, and at the synthesis stage the signal is reconstructed as a discrete weighted sum of
wavelets. These two points (speech analysis using a spectrographic format, and speech syn-
thesis using wavelets) will be discussed in relation to the Sheffield data. Displaying the wave-
let coefficients provides auditory-based wavelet spectrograms (AWS). Different types of
AWS are discussed.

Compared to models of the auditory periphery, AWS can be considered as a somewhat
simplified functional representation of the first stage of analysis (i.e. cochlear fiitering). The
alm is not to provide a refined audirory model, but to propose an auditorily-justified tool in
acoustic-phoretics. T . '

Another application of AWR is speech synthesis. AWR gives a complete resyathesis
scheme. For speech synthesis or modification, it is possible to reduce this redundant repre-
sentation to its most important components. Resyathesis from AWS and reduced AWS indi-
cates those of the acoustic speech parameters that seem more perceptually relevant. Section
2 presents a brief description of the methods. Section 3 discusses of these methods in relation
to the Sheffield data.

2 DESCRIPTION OF THE METHODS

2.1 Overview of AWR

AWR may be interpreted in terms of linear filtering, both at the analysis and at the syn-
thesis stages. These wavelets are defined on a set of points in the time-frequency domain, and
are weighted by a set of coefficients which are dependent on the analysed signal.

To interpret the representation, the wavelets must be localised Tunctions beth in time and
frequency. In other words, they are chosen with a main spectro-temporal maximum, and with
negligible values outside a (small enough) time-frequency domain. One can therefore inter-
pret the local behaviour of the signal by comparison with the analysing wavelets, and one can
consider AWR as a decornposition of a signal on a discrete set of time-frequency points.

The AWS examples presented here were obtained using a critical-band (Bark scale) finite
impulse response (FIR) filterbank. The prototype wavelet was a Hamming window. The fil-
terbank used constant 1 Bark, 6 dB bandwidth filters, In each band, analysing wavelets (re-
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lated to the impuises responses of the filters) were obtained by contraction/dilation and
modulation of the Hamming window.

2.2 Amplitude, phase and filtered instantaneous frequency AWS

As wavelet analysis js equivalent to filtering, one can display multi-band filtered signals
using amplitudes and phases of the wavelet coefficients. This display is fairly different from
a classical Spectrogram because of the linear (instead of bilinear} nature of the analysis, and
because of the frequency scale. We prefer here o spectrographic format where only the coef-
ficients with positive phases are plotted (i.e. half-wave filtered signals). This spectrographic
format provides several representations of the important features of speech signal (dominant

each band, computation of the time-derivative of phase provides instantanecus frequencies of
the filtered signal. Dominant frequencies are enhanced on these spectrograms.

2.3 Reduced AWS .

The ability of the Iepresentation to retain relevant acoustic parameters may be checked
using resynthesis, The first type of resynthesis is directTesynthesis: the sum of all the weight-
ed wavelets. The quality obtained with resyrithesised signals is perfect, excepted for a little
bandwidih reduction, as the chosen wavelets are not idea) bandpass filters. A reduced resyn-

fined. Loca] CNergy concentrations in time and frequency were detected using linear

perceptually identical 1o resynthesised signals.

One step forward in AWS reduction is to synthesise the signal directly from the acoustic
pardmelers extracted from the AWS. This reduction was performed using the tollowing pa-
rameterisation: sinusojdal Tepresentation of the FO-F1 areq, formantic representation (using
dominant frequencies and temporal envelope tiodulations) above. The quality obtained is ex-

linear relationship between the acoustic parameters used for synthesis (temporal envelopes,
dominant frequencies) and speech production parameters (formants, FO). Therefore, the pa-
rameters used for synthesis are orly approximations of the true speech parameters. This ap-
proXimation is good €nough to preserve the general quality, but not to give identical signals.

3 APPLICATION TO THE SHEFFIELD DATA

3.1 Shefficld data

Owing to the limited space available for diagrams, we limited analyses 10 sound exam-
ples referred 1o ag ‘timit.syl’, “clean.syl’ and “dirty.syl”.

Timir' - this example is a well-recorded sentence, uttered by a male American Speaker,
and sampled at 16 kHz Formants are clearly visible, both on wideband spectrograms and
AWS, This example was judged €asy toread by an expert in (American En glish) spectrogram
reading. Fig. 1 shows ‘timit.syl’ in AWS formar; an instantancous frequency AWS corre-
sponding to fig. 1 is shown in fig. 2. and a reduced AWS in fig_ 3.

‘Clean': the quality of this example is rather poor, due to the recording conditions. The
signal is low-pass filtered at 2.8 kHz. Withour any prior knowledge, this sentence appeared
difficuit to understand hoth for French and American listeners in our laboratory. The spectro-
gram reading experiment was also not compietely successful, because it appeared difficult 1o
find the formant frequencies and motions, and because of the unusual phonetic realisations of
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some vowels. Figure 4 shows “clean.syl’ in AWS format. and an instantaneous frequencs
AWS corresponding to fig.4 is given in fig. 6,

‘Dirty’: Figure3 shows “dirty.syl” iIn AWS format, and an mstantaneous frequency AWS
correspending 1o fig.5 is given in fig. 7.

3.2 AWS reading

The acoustic features that are apparent on AWS are dependant both on the acoustic signal
produced by the vocal apparatus, and on the time-frequency resolution of the analysis. Anaj-
yses of quasi-periodic signals, like voiced speech, indicate the following:

*  Below a frequency threshold, individual harmonics are resolved. This threshold
is dependant both on FO and critical bandwidth. In each band a time-varying si-
nusoid is obtained, whose amplitude and phase are set according 1o vocal trace

beats between the harmonic components. Unfortunately, the relationship be-
tween amplinide and frequency modulation of the waveform in a band, and the
underlying speech production parameters (F0, formants, etc.) is nonlineer, and
generally not analytically tractable. Nevertheless, one can prove analytically, at
least for two components beating in a band. that the average period of amplitude
modulation equals 1/F0, and thar the mean of frequency excursion during a fup-
damental period is a local maximum of the spectral envelope.

° Above another frequency threshold, two or more formants merge intg g single
fitter. The beats pattern Is very complex, resulting in a spectral mass on AWS,
with an amplitude modulation frequency greater than F0, and a rather wide fre-
quency modulation. - :

For speech parameters, generally spesking, the first point above corresponds 1o the F1 region.
the second point to F2 and F3, and the final point to the region above F3.

4 CONCLUSIONS .

In this paper an auditory-based wavelet representation was introduced for speech analy-
sis and synthesis.

The auditory Spectrograms obtained are somewhat different to classical Spectrograms; it
is not clear that they will prove better for phoneme identification. Generally speaking, AWS
show less contrast than Specirograms, because it is a signal decomposition and nor 2n energy
distribution. Qther auditory-like processing might be applied after this first stage of analysis.
to enhance contrast. For instance lateral inhibition may enhance spectral contrast and short-
term adaptation may enhance temporal contrast,

On the other hand, both reading and resynthesis indicates that the acoustic parameters
which are visible on AWS could give a more complete description of the speech signal than
those visible on spectrograms: FQ and parameters related to voice quality are visible. It is well
known that voice quality (naturalness, speaker individuality, etc.) is difficyls to assess pre-
cisely using spectrograms. AWS couid work better here. For AWR reduced synihesis. the ac-
curate estimation of speech parameters from the wavelet coefficients is 2 difficult problem.
4s 500n as several harmonics merge in a single band.,

This representation takes advantage of the interplay between perception and production
in speech analysis. Tt might provide another ool for studying several open questions such as:
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how is F1 perceived in relation to FO. what is th

e influence of higher formants on vowel qual-
ity, and what is the perceptual relevance of {th

¢ amplitudes and phases of) lower harmonics?
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Fig. 1 AWS of ‘timit.ayl’.
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Fig.2 Instantaneous frequency AWS of timit.syl".
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Fig.3 Reduced AWS of ‘timit.syl".
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Fig.4 AWS of ‘clean. syl
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Fig.s5 AwWsgf ‘dirty.syt,
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Fig. 6

Instantaneous frequency AWS of ‘clean.syl',
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Fig. 7

Instantanecus frequency AWS of ‘dirty.syl’.




