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Glottal closure instant and voice source analysis using
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Abstract. 1Time-scale representation of voiced speech is applied to voice quality
analysis, by introducing the Line of Maximum Amplitude (LoMA) method. This re-
presentation takes advantage of the tree patterns observed for voiced speech periods
in the time-scale domain. For each period, the optimal LoMA is computed by linking
amplitude maxima at each scale of a wavelet transform, using a dynamic program-
ming algorithm. A time-scale analysis of the linear acoustic model of speech produc-
tion shows several interesting properties. The LoMA points to the glottal closure
instants. The LoMA phase delay is linked to the voice open quotient. The cumulated
amplitude along the LoMA is related to voicing amplitude. The LoMA spectral centre
of gravity is an indication of voice spectral tilt. Following these theoretical consid-
erations, experimental results are reported. Comparative evaluation demonstrates that
the LoMA is an effective method for the detection of Glottal Closure Instants (GCI).
The effectiveness of LoMA analysis for open quotient, amplitude and spectral tilt
estimations is also discussed with the help of some examples.

Keywords. Voice source analysis; glottal closure instants; voice open quotient;
voicing amplitude; voice spectral tilt; wavelet analysis.

1. Introduction

This article presents a multi-scale phase-based framework for analysing voice source features
in speech data. Robust voice source analysis still remains a challenging and important issue
for studying voice quality and vocal expression, vocal function and disfunction, and for many

1Portions of this work were presented in N. Sturmel, C. d’Alessandro, F. Rigaud, Glottal closure
instant detection using Lines of Maximum Amplitudes (LoMA) of the wavelet transform, Proc.
IEEE-ICASSP’09; Vu Ngoc Tuan, C. d’Alessandro Glottal Closure Detection using EGG and
the Wavelet Transform Proc. Workshop Adv. in Objective Laryngoscopy, Voice and Speech
Res. 2000. Vu Ngoc Tuan, C. d’Alessandro. Robust glottal closure detection using the wavelet
transform, Proc. ISCA-Eurospeech’99.
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speech processing applications. Several time-domain and spectral features of the glottal source
are important for speech perception and processing: the instant of maximum vocal tract exci-
tation or glottal closure instant (GCI, correlated to fundamental frequency (F0) and perceived
pitch), the amplitude of excitation and the source spectral richness (correlated to vocal effort),
the glottal open quotient (correlated to the press-lax vocal dimension) (Childers & Lee 1991;
Fant 1993; Fant 1997; Alku et al 1997; d’Alessandro 2006; Gobl & Chasaide 2003). These voice
source features are considered in a new framework, based on the lines of maximum amplitude
(LoMA) in a time-scale representation. The LoMA concept has been introduced in our previous
work (Tuan & d’Alessandro 1999, 2000; Sturmel et al 2009). This method has been successfully
applied to the problem of GCI detection in speech. The main contribution of this article is to fur-
ther develop the application of the LoMA method to GCI analysis and extend it to other voice
source features such as glottal flow amplitude, spectral tilt and open quotient.

1.1 Auditory-based wavelet representation

Time-scale analysis entertains close relationships with auditory perception. According to the
tonotopic organisation of the inner ear, the first stages of auditory perception can be modelled
using a non-uniform filterbank. These auditory filters are organized according to some sort
of psychological scale, such as third-octave, Bark, Mel or Equivalent Rectangular Bandwidth
(ERB) scales. The filtering process is considered to be a simulation of the response of the
basilar membrane to sound stimulation. This is the ‘place coding’ or tonotopic theory of audi-
tory perception. After filtering, patterns of neurone firings at different places in the auditory
nerve give birth to trains of spikes that are (statistically) synchronized with maxima in the
basilar membrane vibration pattern. Timing and synchrony of neuron firing patterns allow
for ‘time coding’ of auditory events. These principles, i.e., filtering and maximum amplitude
detection at the output of the filterbank, have been implemented in various auditory mod-
els, sometimes called ‘cochleograms’ (see several approaches for computing cochleograms
in (Cooke & Beet 1993)). Along these lines, Patterson (1987) proposed the ‘pulse ribbon
model’ of auditory perception, and showed that this model was able to explain many aspects
of phase perception for periodic signal. This model is essentially an auditory filterbank
followed by a maxima detection module. The output of the model is a time–place ‘ribbon’ of pulses.

Auditory frequency scales are close to logarithmic, at least above about 1000 Hz. Then,
auditory filtering is somewhat analogous to time-scale analysis. Speech representation in the
time-scale domain with the help of an auditory-inspired wavelet transform has been explored by
several authors (Irino & Kawahara 1993; d’Alessandro 1993). The auditory wavelet filterbank
can be used for visualization of speech signals in the form of ‘auditory-wavelet’ spectrograms (or
‘scalograms’). An example of such a representation is given in figure 1. This picture represents
the output of a Bark scale zero-phase filterbank (implemented using a Hamming window and
short-term Fourier transform filtering). The bottom panel represents the filters outputs. The top
panel displays only positive part of the filter outputs. Characteristic ‘tree’ patterns are obtained
for voiced speech, as a result of the multi-scale analysis of this quasi-harmonic signals. It should
be noted that in this example, the fundamental (first harmonic) is hardly visible on the bottom
panel, although it appears clearly in the top panel.

1.2 Previous work on voice singularities detection using wavelets

The analogy between auditory models and the wavelet transform provides an extended math-
ematical framework for signal analysis along these principles. If one defines a set of fixed
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Figure 1. Output of a Bark scale zero-phase filterbank. The bottom panel represents the filters outputs.
The top panel displays only positive part of the filter outputs. ‘We hear’ spoken by female voice.

scales, the wavelet transform can be interpreted as a non-uniform filterbank. As for voice source
analysis, the wavelet transform has been mainly applied to singularities detection. Mallat &
Zhong (1992) and Mallat & Hwang (1992) showed that wavelet transform modulus maxima
are organized as edges in the time-scale representation, and are pointing to the singularities of
the signal. An application of this feature to pitch detection was first proposed by Kadambe &
Boudreaux-Bartels (1992). More recently, Bouzid & Ellouze (2007, 2009) revisited Kadambe
and Boudreaux-Bartels’ method, using a multi-scale product of the wavelet transform, inspired
by image processing works. These analyses are based on the dyadic wavelet transform com-
puted only for two or three scales encompassing two or three octaves above the average F0.
Then, GCIs are detected by locating local maxima of the transform using a multi-scale product.
Local minima of the multi-scale product are associated with glottal opening instants. The voice
open quotient (ratio of the difference between opening and closure over the fundamental period)
can be derived from these measures. Comparison with an electroglottographic (EGG) reference
showed good agreement.

1.3 Voice source analysis using LoMA

Inspired by the tree patterns observed in figure 1, the concept of lines of maximum amplitude
across scales in the wavelet transform domain has been introduced (Tuan & d’Alessandro 1999).
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LoMA makes use of all the scales for analysis of the tree patterns. This concept has been intro-
duced for GCI detection. The results obtained were compared to an EGG reference (Tuan &
d’Alessandro 2000) and the DYPSA (DYnamic programming projected Phase-Slope Algorithm)
method (Sturmel et al 2009).

It appears that the LoMA contains much more information than only singularities positions.
Application of LoMA to voiced speech analysis is further extended in this article.

Section 2 introduces the LoMA concept and the algorithm developed for LoMA analysis. The
LoMA patterns in the time-scale domain are related to the linear acoustic model of speech pro-
duction in section 3. The principle for voice source feature analysis using LoMA is theoretically
derived in this section. The remaining sections report on experiments using this theory. GCI
detection using LoMA is discussed in section 4. The LoMA-derived GCI are compared to an
EGG reference, to videoendoscopy, and to data obtained with the help of the DYPSA method
(Naylor et al 2007).

Observations of auditory spectrograms and section 3 show that LoMA morphology, and par-
ticularly their length and their shape, vary as a function of voice quality. Voice quality features
estimation with LoMA is experimentally studied in section 5. It is shown that the voice open quo-
tient, the amplitude of voicing and the voice spectral tilt can be derived from LoMA. Section 6
concludes this article.

2. Lines of maximum amplitude in the time-scale domain

The lines of maximum amplitudes in the time-scale domain are built on the output of a non-
uniform filterbank. A zero-phase filterbank is better suited for the purpose of speech analysis.
The global response of the filterbank should be flat. The wavelet transform gives a simple and
elegant solution for implementing a non-uniform zero-phase filterbank.

2.1 The wavelet transform as a zero-phase filterbank

Non-uniform filtering is commonplace since a long time in acoustic signal processing. Nowa-
days, non-uniform filtering can be considered in the framework of the wavelet transform. The
continuous wavelet transform (WT) can be considered as the convolution between the signal and
a dilated/compressed mother wavelet. Let s(t) be the speech signal, its WT yi (t) at the i th scale
si is given by:

yi (t) = s(t) ∗ h

(
t

si

)
= s(t) ∗ hi (t), (1)

then hi (
t
si

) can be interpreted as a filter impulse response and yi (t) as the response of this filter to
signal x(t). Many possible choices are possible for h. In this study, we choose a simple Gaussian
pulse:

h(t) = − cos(2π fwt) exp

(
− t

2τ 2

)
, (2)

where fw represents the centre frequency of the smallest scale, and τ = 1
2 fw

. Because of the
minus sign in the cosine, the wavelet analysis will have a maximum response to negative peaks.
This is because glottal closures are in principle corresponding to negative peaks in the speech
signal.
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The filters impulse responses are not causal, because of the zero-phase condition. Then,
there is no phase delay between the signal and filter outputs. An impulse, for instance, gives a
synchronized response at each scale.

The number of filters used depends on the application. For analysis, a dyadic WT with si = 2i ;
i = 0, 1, 2, 3, 4, 5 seems sufficient. In the experiments, the signals were sampled at fe = 8 kHz
or fe = 16 kHz, and then fw = 4 kHz or fw = 8 kHz. yi (t) represents one of the outputs of a
six band filterbank, centered at frequencies fi : 4000, 2000, 1000, 500, 250, 125 Hz, with −3 dB
bandwidths of ≈ 0.5 × fi . For visualization, a larger number of filters is needed (for instance
three to six filters by octave) because it makes the lines more visible.

Scaling of the impulse responses results in scaling of the filter gains, according to:

hi (t) = h

(
t

s

)
FT−→ sĥ(s f ) = ĥi ( f ), (3)

where ĥ represents the Fourier transform (FT) of h.
Figure 2 shows the output of a zero-phase wavelet filterbank (in this case using 35 filters)

to a periodic train of pulses. Only amplitudes above a threshold ε, 0 < ε � 1 are displayed.
This shows that lines of positive amplitudes are converging to the peak position. The lines cor-
responding to maximum amplitudes for each period and each scale are straight lines, pointing
towards the signal singularities. The next section discusses construction of these lines.

2.2 Lines of maximum amplitudes of the wavelet transform

For each speech period, lines of maxima across scales are searched. The amplitude maxima of
the wavelet transform are computed at each scale. These local maxima are defined as any point
η at scale i such that yi (η) > yi (t) when t belongs to the right or left neighbourhood of η.

For analysing events in the time-scale domain, the next step of the method aims at organizing
amplitude maxima into lines of maximum amplitude across scales. A single characteristic line
is associated with each pitch period. This is achieved using a dynamic programming algorithm.
Dynamic programming is a two-step process: in the first step, all the lines of maximum amplitude
from the smaller scale down to the larger scale are built. Then backtracking is used for finding
the optimal line, i.e., the line cumulating the maximum amplitudes.

Let Ma( j, i) represent the j th amplitude maxima at scale i . For fe = 8 kHz, scales are ordered
from 0 (centre frequency 4000 Hz) to 5 (centre frequency 125 Hz). Let Lm( j, i) be the LoMA
that is searched. The search begins at scale 0, and the LoMA is built up to scale 5. Accumulated
amplitudes Ac( j, i) along LoMA are computed using the following local equations:

Ac( j, i) = max

⎧⎨
⎩

Ac( jl, i + 1)/ lw + Ma( j, i)
Ac( j, i + 1) + Ma(i, j)
Ac( jr, i + 1)/rw + Ma( j, i)

, (4)

where jl (resp. jr ) is the index of the amplitude maximum in the left (resp. right) neighbourhood
of Ma( j, i) at scale i + 1, and where lw (resp. rw) is a weighting factor, taken as the absolute
value of the difference between the maxima positions in time, j and jl (resp. jr ): lw = | j − jl|
(resp. rw = | j − jr |).
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Figure 2. Output of the wavelet filterbank for a Dirac pulse train (top) and a sinusoid (second from bot-
tom) with fundamental frequency: 200 Hz. Thirty-five filters in the range of 100–2100 Hz are used. Only
the positive values of the responses are plotted for the Dirac pulse train. The optimal LoMA detected is also
plotted (second from top for the Dirac pulse train, bottom for the sinusoid).

Accumulated amplitudes are computed from the smaller scale to the larger scale. At the larger
scale, the LoMA are searched from the array of accumulated amplitudes using back-tracking.
Following the standard dynamic programming procedure, maxima are chained back from large
to small scales to build the lines. The dynamic programming procedure used here for building
LoMA is close to the classical dynamic time warping procedure used in speech recognition.
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Figure 3. LoMA found for a Dirac pulse corresponding to figure 2.

The number of LoMA in the time-scale domain depends on the larger scale chosen: there is
one LoMA for each maximum at this scale. Each LoMA is characterized by its chain of maxima
and by its weight (accumulated amplitude maxima along the line).

Examples of LoMA for a Dirac pulse train and a sinusoid are displayed in figure 2. Figure 3
displays in more detail the analysis of a Dirac pulse. Three lines linking maxima are built. The
optimal line, cumulating the maximal amplitudes (thick line), is a straight line, because all the
zero-phase filter responses are synchronized.

An example for a voiced speech segment is presented in figure 4. In contrast to figure 3,
because of the phase delays of the signal for different scales, LoMA are not straight lines. In this
example, seven scales are used.

The lines are organized in packets, or trees, as can be seen in figure 4. Several separated lines
at a smaller scale are merging and form a common line at the scale immediately larger. Ideally,
for voiced speech, exactly one tree is expected for each voicing period.
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Figure 4. LoMA trees and optimal LoMA for a voiced speech segment.
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3. LoMA and voiced speech production

3.1 Linear model of speech production

In this section, the linear model for voiced speech production (Fant 1960; Flanagan 1972) is
reviewed, in order to interpret the LoMA and to link features observed on the LoMA to voice
source features.

The linear model of voiced speech production writes:

s(t) =
∑

n

δ(t − nT0) ∗ g(t) ∗ v(t) ∗ l(t) (5)

=
∑

n

δ(t − nT0) ∗ dg(t) ∗ v(t), (6)

where s(t) is the speech signal, v(t) is the impulse response of the vocal tract system, T0 = 1/F0
the fundamental period and g(t) the glottal flow component. The lip radiation component l can
be approximated by a first-order high-pass filter, close to a derivative filter. Then, it is usually
combined with the glottal pulse component to form the glottal flow derivative (GFD) dg.

In the spectral domain the model is:

ŝ(ω) = | ŝ(ω) | e jθ(ω) (7)

= 1

T0

∑
n

δ(2π f − 2nπ F0)d̂g(ω)̂v(ω)

= 1

T0

∑
n

δ(2π f − 2nπ F0)

| d̂g(ω) | e jθdg (ω) | v̂(ω) | e jθv(ω). (8)

For voiced speech, one can assume that the vocal tract v is an all-pole filter, with N pairs of
poles ẑi et ẑ∗

i corresponding to spectral formants:

v̂(ω) = K e− j Nω∏N
i=1(1 − ẑi e− jω)(1 − ẑ∗

i e− jω)
. (9)

The poles can be expressed as:

zi , z∗
i = exp[−π Bi T ± 2 jπ fi T ], (10)

where K is a gain constant, Bi represents the formant −6dB bandwidth and fi the formant centre
frequency. It is a minimum phase system.

3.2 Glottal flow derivative

The glottal flow derivative component is generally described in time domain using pulse-like
waveforms. According to a recent study (Doval et al 2006) comparing the main GFD models
proposed in the literature, this component can be described by the following parameters.

(i) The fundamental period T0, or pulse duration.
(ii) The maximum excitation E , or maximum of the GFD.

(iii) The open quotient Oq , or ratio of the open phase over the pulse duration. The GCI is located
at Oq T0 if the pulse begins at time 0.
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(iv) The asymmetry coefficient, or ratio of the opening and closing phases. In some models, this
ratio is fixed (e.g. to 0.66 in the KLGLOTT88 model (Klatt & Klatt 1990)).

(v) The glottal spectral tilt, often implemented as a low-pass filter. This parameter is linked in
the LF (Liljencrants–Fant) model (Fant 1993, 1997) to the smoothness of the wave after the
GCI (or return phase, from maximum excitation to 0).

In the spectral domain, the GFD is equivalent to a low-pass filter. If the GCI is taken as the
reference point, it is a causal/anticausal low-pass filter (Doval et al 2006). This filter exhibits
a low-frequency spectral peak, the so-called glottal formant, and an additional attenuation at
medium or high frequency corresponding to the source spectral tilt. The maximum excitation
is highly correlated to sound pressure level (Gauffin & Sundberg 1989). The glottal formant
frequency is mainly controlled by the open quotient while its bandwidth is mainly controlled
by the asymmetry coefficient. The glottal formant roughly takes place between the first and
the fourth harmonic. The spectral tilt part of the spectrum behaves similar to a first order (or
second order) low-pass filter which results in a −12 dB/oct (or −18 dB/oct) slope in the GFD
spectrum. Only a summary can be given here, the interested reader will find more details in
Doval et al (2006).

For the sake of illustration, the KLGLOT88 model (Klatt & Klatt 1990) is considered in the
following. The KLGLOT88 glottal flow derivative is given by:

dg(t) =
{

2a(t + T ) − 3b(t + T )2 −T ≤ t ≤ 0
0 0 ≤ t ≤ T0 − T

(11)

with T = OqT0, a = 27
4

AV
O2

q T0
and b = 27

4
AV

O3
q T 2

0
.

It should be noted that in Eq. 11, the GCI is taken as time reference (t = 0), in contrast to
the original presentation of the model. The advantage of the GCI-centred formulation is that
one can interpret the GFD model as a mixed phase (causal–anticausal) linear system (in the
original presentation, it is rather a non-linear excitation waveform). Then the source dg and filter
v components of Eq. 8 can be combined in a global vocal linear filter x :

x̂(ω) = d̂g(ω)̂v(ω) =| x̂(ω) | e jθx(ω). (12)

3.3 Phase delay and group delay

It is interesting to consider the phase delay and group delay of this filter. They are derived from
the phase spectrum according to:

τφ = −θx(ω)

ω
(13)

τg = −dθx(ω)

dω
. (14)

The amplitude spectra, phase delay and group delay of one period of the GFD according to
the models in Eqs. 11 and 12 are plotted in figure 5, using the KLGLOTT88 model (T0 = 10
ms, Oq = 0.3, no spectral tilt filter (abrupt closure)). This source component is filtered by a /a/
vowel ( fi , Bi = (800,150); (1200, 270); (2600,180); (3500, 200); (5000, 280)).

The phase delay line and group delay are plotted with frequencies on the y-axis and time delay
on the x-axis. With this representation, the phase delay and group delay lines are vertical, as is
the LoMA for one period.
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Figure 5. Magnitude spectrum, phase delay and group delay for a GFD (top row), and for a 5 formants
synthetic vowel /a/, using the same GFD as source component.

Consider first the top row of figure 5. The phase delay is larger for low frequencies, giving the
typical slanted shape of the LoMA. The group delay is oscillating around a constant delay, with
a small negative delay for the GFD (remember that the GCI is taken at time 0, then the source is
anticausal, and precedes the GCI), and a larger, positive, group delay after vocal tract filtering.
The bottom row of figure 5 shows the effects of vocal tract filtering on the phase delay and group
delay. Additional deviations result from the formant phase spectra.

It is interesting to study the phase and group delays of the signal at the output of the wavelet
filterbank. When observed through the wavelet filterbank, the signal writes:

s(t) =
∑

i

hi (t) ∗
(∑

n

δ(t − nT0) ∗ x(t)

)
(15)

= x(t) ∗
(∑

i

∑
n

δ(t − nT0) ∗ hi (t)

)
. (16)

As the filter bank is zero-phase, ĥi (ω) =| ĥi (ω) | :

ŝ(ω) =
∑

i

ĥi (ω)
∑

n

δ(2π f − 2nπ F0)̂x(ω) (17)

= | d̂g(ω)̂v(ω) | e j (θdg (ω)+θv(ω)) (18)∑
i

∑
n

δ(2π f − 2nπ F0) | ĥi (ω) | .

3.4 Interpretation of low frequency phase delay

Consider first the situation for low frequencies (large scales). At the scale containing the funda-
mental frequency component, the wavelet analysis is narrow band, and then it selects generally
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only one spectral component (see for instance the first and second harmonics in the first part of
figure 1): ∑

n

δ(2π f − 2nπ F0) | ĥi (ω) |= |ĥi (2π F0)|δ(2π( f − F0)), (19)

then in this band the signal is:

ŝi (ω) = | d̂g(ω)̂v(ω) | e j (θdg (ω)+θv(ω)) (20)
|ĥi (2π F0)|δ(2π( f − F0))

in the time domain:
si (t) = x(t) ∗ |ĥi (2π F0)| cos(2π F0t), (21)

then si (t) corresponds to the output of the filter x(t) driven by a sinusoidal signal. In this
situation, as the sinusoidal envelope is constant, the output signal:

si (t) �| x̂(2π F0) | |ĥi (2π F0)| cos(2pi F0(t − τφ) + θx (2π F0)). (22)

It should be noted that only the phase delay appears: the group delay does not appear because
the sinusoidal signal has a constant amplitude (the reader is reffered to (Papoulis 1984, p. 124)
for details).

Considering only the source component, the LoMA at F0 gives a direct measurement of the
phase delay τφ of the speech signal. As the source component dominates the speech signal for
low frequencies, the LoMA phase delay at F0 can be used for estimation of the source phase
delay, despite the phase delay of the vocal tract.

3.5 Interpretation of high frequency phase and group delay

For small scales, the wavelet filters are wide-band. Then several harmonics are merged in the
periodic excitation signal. These harmonics are beating, with an envelope modulation Ai (t), a
carrier frequency ωi , and a phase φi :

si (t) = x(t) ∗
n=I1∑
n=I0

|ĥi (2nπ F0)| cos(2nπ F0t) (23)

= x(t) ∗ Ai (t) cos(ωi t + φi ) (24)

assuming that the signal has a slowly changing amplitude envelope Ai (t), relative to the change
of phase ωi of the sinusoid, this yields (Papoulis 1984, p. 124):

si (t) � | ̂x(ωi )|Ai (t − τg) cos(ωi (t − τφ)). (25)

As the phase delay decreases in 1/ f , it becomes small for small scales. The group delay is
almost constant for high frequencies (small scales), as seen in figure 5. This means that the time-
domain maxima for small scales, close to the maxima of Ai are synchronized. They are close
to the GCI. As noted earlier, this property has already been exploited in a number of studies for
GCI detection using multi-scale analysis.

The phase delay of the first harmonic relative to the GCI can be estimated on the LoMA.
Considering the delay between the GCI and the local maximum at the fundamental frequency,
the LoMA phase delay factor Lpf is defined by:

Lpf = τp(F0) − GCI. (26)
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In turn the Lpf can be used for estimation of the voice open quotient Oq, because Oq can be
related to the phase (and then the phase delay) of the first harmonic, using closed form expres-
sions for the spectrum of glottal flow models (Doval et al 2006). Estimation of open quotient
with the help of Lpf is discussed in section 5.

3.6 LoMA amplitude and maximum excitation

The LoMA for each period in the time-scale domain provides an elegant representation of the
relative strength of each period. The total amplitude on the LoMA of one period is an estimation
of the total excitation amplitude in one period P , because it is the sum of the maximum filter
responses for all scales. A LoMA amplitude factor Laf is defined as the amplitude accumulated
across scales along the LoMA as:

Laf =
∑

i

max
t∈P

(|hi (t) ∗ x(t))|). (27)

This factor is proportional to the amplitude of excitation in the vicinity of the GCI, and then
gives an indication of the voiced period maximum excitation. This is discussed in section 5.

3.7 Spectral tilt and LoMA centre of gravity

The repartition of the energy along the LoMA is also a measure of interest. Considering voice
spectral tilt as a low-pass filter attenuating the GFD, the amplitude along the LoMA decreases
for small scales when spectral tilt increases.

A ‘long’ LoMA, indicates a spectrally rich voicing period, and conversely, a ‘short’ LoMA
indicates a spectrally poor period. This is illustrated in figure 2 for a sinusoid and a Dirac pulse
train, and in figure 6, for a voiced speech segment (voiced fricative to vowel transition). A
measure of this repartition of energy along the LoMA is given by the LoMA centre of gravity:

Lcg =
∑

i maxt∈P |hi (t) ∗ x(t))| fi∑
i fi

, (28)

where P is the time interval corresponding to the period, and fi the wavelet filter centre
frequencies.

This factor should give an indication of the voiced period strength or spectral tilt. This is
discussed in section 5.

The effect of the vocal tract formant structure is illustrated in figure 5. The amplitude and
spectral centre of gravity factors are influenced by the formant structure, and are likely to
vary according to the vowel. Then, these measures will give a global indication of maximum
excitation and spectral tilt, rather than an analysis of the source only.

4. Glottal closure detection using LoMA

In this section, GCI detection using LoMA is presented and evaluated. Several types of methods
have been proposed for GCI detection, and it is important to compare the proposed method to
previous studies. LoMA GCI detection is compared to the DYPSA method (Naylor et al 2007).
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Figure 6. Output of the wavelet filterbank for a speech signal (voiced fricative/vowel transition, male
voice). Thirty-five filters are used, in the range of 100–2100 Hz. To enhance the lines of maximum
amplitude, only the positive values of the responses are plotted in the top panel.

4.1 Algorithm for GCI detection

GCIs are computed as the extremities of the optimal LoMA (smallest scale) for each pitch period
(this is illustrated in figure 4). The algorithm for GCI detection can be described as follows:

(i) Pre-processing: estimate F0 for the segment studied. A very accurate estimation is not
needed: coarse estimation (within an octave) is sufficient, because the aim is only to define
the largest scale, i.e., the filter containing the fundamental frequency.

(ii) Compute a dyadic wavelet transform (octave-band). The basic wavelet is chosen in such in
a way that the transform is equivalent to a zero-phase filterbank. Each filter is a band-pass
filter with a band-width proportional to its centre frequency.
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(iii) Select the smallest scale (usually centred around the 4 kHz band) with significant amplitude.
Detect all the time-domain maxima at this scale (local maxima between two zero-crossings).

(iv) For each of these maxima, build a LoMA according to the local dynamic programming
equations, descending the scales down to the largest scale.

(v) Using prior pitch information, the scale containing the first harmonic is determined. The
LoMA for each pitch period at this scale are selected.

(vi) The optimal LoMA for each period is determined using backtracking. Then the GCI for this
period is defined as the time position along the optimal LoMA at the smallest scale.

(vii) Post-processing. Most of the errors observed are GCIs in excess, i.e., situations where two
optimal LoMA are detected for the same pitch period. Two heuristics are employed for
sorting out this type of errors: a period-to-period change in pitch of more than 30%, or a
change in accumulated amplitude of more than 50% between two LoMA.

For experiments, discrete-time speech signals are analysed. Then, the GCI cannot be deter-
mined with an accuracy greater than the sampling period (the sampling period is 125 μs at 8
kHz). Parabolic interpolation can be used for increasing the GCI estimation accuracy. Near a
GCI, a parabola passing by this maximum and two adjacent points is computed. The GCI is
taken at the parabola maximum.

4.2 Evaluation of GCI detection using an electroglottograph

In this part, the results obtained with the LoMA algorithm and an electroglottographic (EGG)
reference are compared. These results were first partly presented in Tuan & d’Alessandro (2000).
GCI are detected by two methods. DEGG GCI represent GCIs detected on the derivative of the
EGG (DEGG) signal using peak detection and thresholding (Henrich et al 2004). LoMA GCI
represent GCIs detected on the speech signal using LoMA.

A database of speech, including various types of voice production (vocal fry, modal and
falsetto voices, spontaneous and read speech, male and female voices) has been recorded. Acous-
tic signals were recorded in a sound-proof room, using a condenser microphone (Brüel & Kjær
4165) placed at 50 cm from the speaker’s mouth, a preamplifier (Brüel & Kjær 2669) and a con-
ditioning amplifier (Brüel & Kjær NEXUS 2690). Electroglottographic signals were recorded
simultaneously, using a two-channel electroglottograph (EG2). The data were recorded (one
channel for the acoustic signal and the other one for the EGG signal) using a DAT-recorder
(PORTADAT PDR1000, 16 bits/16 kHz)).

Four subjects have been recorded (2 males and 2 females). The speakers were asked to read
three short stories, with normal voices, then with a high pitch using falsetto, and then with a very
low pitch using vocal fry. Sustained vowels and spontaneous speech (an informal conversation
on daily life matters) were also recorded (figure 7).

The GCIs obtained with the DEGG signals are considered as true GCIs and taken as reference.
The GCIs obtained in the speech signal are delayed from the DEGG peaks, mainly because
of the sound propagation time. This delay depends on the distance between the lips and the
microphone, on the vocal tract group delay and on the electronic delay of the measurement
apparatus. The delay is almost constant for each recording (excepted the time-varying vocal
tract group delay). To compare the GCI detected by the two algorithms, the DEGG and speech
analyses must be resynchronized by delaying the DEGG. This is achieved by maximization of
the correlation between the GCI trains obtained by DEGG and LoMA, as a function of the
delay. Figure 8 displays the EGG, DEGG, speech and wavelet filterbank signals synchronized
according to this procedure.
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Figure 7. From bottom to top, high speed glottal imaging, DEGG, speech signal and LoMA, for a high
(top panel) and a low (bottom panel) F0.

DEGG and LoMA GCI analyses are compared in table 1 for sustained vowels. In this table,
Dur is the segment duration (in s); Del: the estimated delay between sound and EGG (ms); Mdiff:
average difference (in μs) between GCI detected by the two methods; N EGG: number of GCI
detected on the EGG; N LoMA: number of GCI detected using LoMA; % diff: percentage of
difference between the last two numbers. N EGG and N LoMA are in general very close, except
for one condition (7.8% of differences). The mean value of Mdiff is −28 μs (but with standard
deviation 300 μs). One can conclude that the LoMA GCIs and EGG GCIs are very close together.

4.3 Comparison with DYPSA using EGG

For further evaluation of GCI detection using LoMA, a comparative assessment using the
DYPSA method (Naylor et al 2007) is presented. The DYPSA method is based on analysis of
the spectral phase. In the speech production model, the speech signal is assumed to be mini-
mum phase. Then the linear phase component observed in the speech spectrum reflects the delay
between the GCI and the analysis window. Zero-crossing of the average phase slope are a good
indication of the GCI (Smits & Yegnanarayana 1995; Naylor et al 2007).

The quality of GCI detection is assessed using the time delay between DEGG-CGI and the
closest LoMA-GCI or DYPSA-GCI. Two other measures of quality are the rate of false alarms (a
GCI is detected but is not present in the DEGG) and the miss rate (a DEGG GCI is not detected
by the method).
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Figure 8. Examples of synchronous EGG and LoMA GCI detection. From top to bottom: EGG signal,
DEGG signal, speech signal and wavelet filterbank. GCI–LoMA are indicated by vertical lines. EGG and
speech time delay are compensated.

Again, prior to comparison, the EGG and acoustic signals are aligned in order to compensate
for acoustic propagation delay between the glottis and the microphone. In an additional test con-
dition, the speech signal is inverse filtered using LPC (Linear Predictive Coding) (18 coefficient,

Table 1. Comparison of GCI detection by EGG and LoMA (see text).

Dur (s) Del (ms) Mdiff (μs) N DEGG % diff N LoMA

1.3 0.4 −39 206 1.9 210
2.5 2.2 11 349 0.8 346
1.8 1.4 12 175 0.5 176
3.0 3.2 −3 474 1.2 480
1.8 0.6 −38 380 0.2 379
1.5 0.1 −10 282 7.8 306
3.0 1.8 −132 517 2.1 506
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autocorrelation), for the sake of removing the effects of the vocal tract prior to LoMA analysis
(Ananthapadmanabha & Yegnanarayana 1979). A set of 20 sentences of read French extracted
from the corpus (9 sentences from a male speaker, 11 sentences from a female speaker, overall
about 2 minutes and 50 seconds of signal) are used for assessment.

The results are displayed in figure 9. Each panel presents the histogram of the delay between
the GCI detected by a given method, and the GCI detected using DEGG. Ideally, the histogram
should be an impulse at delay 0 (meaning that all the GCI are detected with 0 delay). These
histograms are characterized mainly by their dispersions, measured by standard deviations. The
top panels show the global results, the middle panels the results for the female speaker, and the
bottom panels the results for the male speaker.

The standard deviation of the whole corpus is similar in DYPSA and LPC-LoMA. Histograms
vary according to the gender of the speaker (i.e., average F0), as indicated in figure 9, with
standard deviations between 406 and 600μs.

False alarm and miss rates for the three methods are reported in table 2. These rates are com-
parable to the percentage of differences between DEGG and LoMA GCI reported in table 1,
for a more difficult and more realistic task (sustained vowels vs. running speech in sentences).
The LoMA GCI detection method compares favourably with DYPSA for female (high pitched)
voices. Conversely DYPSA compare favourably with LoMA GCI for male (low pitched) voices.
On an average, LoMA GCI seems slightly better than DYPSA as far as the miss rates are
concerned. False alarm rates are low for all methods.
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Figure 9. Distribution results–analysis of real speech corpus. 100μs steps.
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Table 2. Miss rates (MR) and False Alarm rates (FA) for Male (M),
Female (F) and Total (T) voices. EGG compared to DYPSA (DYP), LoMA
(LOM) and LPC-LoMA (LPC).

Method MR T MR M MR F FA T FA M FA F

LPC 12.95% 10.25% 13.84% 0.53% 0.60% 0.50%
DYP 4.25% 1.33% 5.21% 0.52% 0.63% 0.48%
LOM 2.88% 3.03% 2.83% 0.50% 0.59% 0.47%

Prior LPC analysis does not improve GCI detection using LoMA. The GCI position are less
widespread, but miss rates are much higher with LPC rather than without LPC. A possible expla-
nation is that LPC often emphasizes the second harmonic relative to the first harmonic. The
LoMA method is prone to errors in this situation.

For the sake of illustration of the LoMA and DEGG GCI detection methods, figure 7
displays LoMA analysis together with the EGG and glottal images obtained by high speed
videoendscopy.2 Images are sampled at a rate of 4000 frames/s. In this figure, the differences
between the EGG GCI (indicated by a circle) and the LoMA GCI (indicate by a star) are less
than one frame.

5. Voice source analysis using LoMA

In this section estimation of voice quality features using LoMA is discussed. Three parameters
are estimated: the voice open quotient, the amplitude of voicing and the voicing strength.

5.1 Open quotient

The tense/lax voice quality dimension is mainly linked to the voice open quotient Oq . Oq is
close to 1 for a lax or breathy voice and may be as low as 0.3 for a very pressed or tense voice. As
discussed in section 3, the open quotient is linked to the low frequency behaviour of the glottal
flow. In the spectral domain, Oq is closely related to the centre frequency of the glottal formant
(see a detailed discussion in Doval et al 2006).

In the context of LoMA, the open quotient can be estimated using the phase delay at large
scales, and particularly the phase delay of the fundamental frequency compared to the GCI. This
measurement is based on the spectral resolution of the wavelet analysis in the vicinity of the
voice first harmonic.

Using GFD models, one can compute analytically the phase delay at F0 as a function of Oq.
It is also possible to derive empirical values of the phase delay as a function of Oq using GFD
models. This approach is illustrated in figure 10. The LoMA are displayed for two conditions

2For the purpose of illustration, a datafile was kindly provided by Nathalie Henrich. It contains
a 500 ms long recording of high-speed images and the corresponding EGG signal in the case
of a nonpathological male phonation. This recording was made in the Department of Voice,
Speech and Hearing Disorders at the University Medical Center of Hamburg-Eppendorf in
2004, by Nathalie Henrich, Frank Müller, Götz Schade and Markus Hess. The subjects were
Robert Expert and Cédric Gendrot. Data were processed by Nathalie Henrich et Sevasti-Zoi
Karakozoglou.
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Figure 10. Estimation of open quotient using the difference between phase delay at F0 and GCI. Top: two
examples of LoMA analyses; second from top: speech signal, bottom: phase delay for each signal period;
second from botom: open quotient estimated using DEGG.

of Oq (relatively high and low Oq) in the top panel for synthetic speech. The Lpf is used for
Oq estimation in the bottom panel. The EGG derived Oq estimation is compared to Ldp. Both
measures are highly correlated.

Open quotient measured using DEGG and LoMA are compared in figure 11, for a male
voice sustained vowel. The speaker made a glottal abduction–adduction–abduction vocal ges-
ture, resulting in a high–low–high open quotient pattern. Both measures are highly correlated.
These results indicate that the Ldf is a promising measure of open quotient variation.

5.2 Amplitude of voicing

The LoMA is constructed as the optimal line, then it contains maximum amplitudes for each
voicing period at each scale. It can be characterized by the total amplitude accumulated and by
the repartition of amplitudes at different scales.

The total amplitude carried by the LoMA, as measured by the Laf, is linked to the amplitude
of voicing in the corresponding period. Considering only the glottal flow derivative component,
without vocal tract, the Laf represents the maximum excitation amplitude E , and then is strongly
correlated to the sound pressure level (Gauffin & Sundberg 1989). The vocal tract component
modify this amplitude: then the Laf is a measure of E multiplied by the vocal tract gain. There-
fore, the Laf is proportional to E , and depends also on the vowel produced. The Laf provides a
global measure of voicing amplitude.
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Figure 11. Estimation of open quotient using the difference between phase delay at F0 and GCI.



620 Christophe d’Alessandro and Nicolas Sturmel

1 2 3 4 5 6
−1

0

1

time (s)

1 2 3 4 5 6

1000

1500

2000

C
oG

 fr
eq

ue
nc

y 
(H

z)

Figure 12. LoMA centre of gravity for six syllables with increasing vocal effort.

5.3 Strength of excitation

It is well established that vocal effort is not only related to the voicing amplitude but also to
spectral richness. Another measure of the period strength is provided by the lengths of LoMA
in the time-scale domain. Figure 2 illustrates variation of the LoMA lengths as a function of
the time-scale energy distribution of the signal. A sinusoid excites only the larger scales of the
filterbank. In contrast, an impulse excites all the scales. For a consonant to vowel transition
(voiced fricative to vowel transition), the lines grow according to the increase of spectral richness
across scales, as displayed in figure 6.

Spectral richness is a rather vague term, that can receive many interpretation. A simple form is
the ratio of energy in higher frequency bands relative to lower frequency bands (Childers & Lee
1991). Another definition is ‘spectral tilt’ in the glottal flow, measured as the spectral attenuation
at 3 kHz, relative to the fundamental frequency (Klatt & Klatt 1990). This parameter is related
to the behaviour of the glottal flow near glottal closure (Doval et al 2006). Voicing strength can
also be defined as the speech excitation impulsiveness (a recent review and discussion on the
definition of voicing strength and its measurement can be found in Seshadri & Yegnanarayana
2009).

For measuring the voicing strength, in addition to Laf, the LoMA centre of gravity Lcg is
proposed. This measure is illustrated in figure 12. The Lcg is plotted for syllables with increasing
vocal effort. Figure 12 indicates that the spectral centre of gravity along the LoMA increases
with increased vocal effort. Similar to the Laf, the Lcg is easy to interpret if one considers
only the source component. Considering only the glottal flow derivative component, without
vocal tract, the Lcg is a measure directly representing the voice spectral tilt. However, the vocal
tract component modifies this amplitude: then the Lef is a measure of the source spectral tilt
multiplied by the vocal tract gain. It is a global measure of speech spectral richness, and not
only a voice source-related measure. For a same vowel, however, the Lcg varies according to the
voice spectral tilt.

6. Conclusion

In this article, the tree patterns observed in time-scale representations of speech, such as
cochleograms or auditory scalograms, are interpreted for analysis of voice quality features. The
LoMA representation is proposed for this analysis. The first stage is the wavelet filterbank. In
a second stage, time-domain maxima at each scale are detected. This representation is close in
principle to auditory models such as the pulse-ribbon model (Patterson 1987). In the third stage,
the specific LoMA method itself is introduced. Maxima in each band are linked across scales
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to form tree patterns characterizing the signal in the time-scale domain. According to the lin-
ear model of speech production, and particularly considering spectral properties of glottal flow
models, these patterns can be interpreted for voice source parameters estimation.

First, a unique system of branches appears for each voicing period. Then an optimal line, the
LoMA, is searched using dynamic programming, for each period. The LoMA exhibits interesting
properties:

(i) The line points to the GCI at smaller scales.
(ii) The phase delay at F0 relative to the GCI is related to voice open quotient.

(iii) The accumulated amplitude along the LoMA is related to voicing amplitude.
(iv) The LoMA spectral centre of gravity is an indication of voice spectral tilt.

These properties are tested for voice quality analysis. The LoMA appears as an effective
method for GCI detection, and compares favourably with EGG and DYPSA. Open quotient,
amplitude and spectral tilt estimations provide promising results. In this article, they are illus-
trated only with the help of a few examples. However, they are currently systematically tested
on large databases.

The work developed in the context of speech signals could also be extended to other types of
highly structured monophonic signals, such as musical instrument signals, provided that specific
models of the time-scale patterns for these signal are elaborated.

Contributions of Vu Ngoc Tuan and François Rigaud were instrumental in developing the
present research, and they are gratefully acknowledged. The authors wish to thank Nathalie
Henrich for providing the recordings displayed in figure 7.
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