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Modification of the Aperiodic
Component of Speech Signals for
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ABSTRACT Modeling the excitation component of speech signals is a challenging
problem for speech synthesis. Recently, several works have been devoted to peri-
odic/aperiodic decomposition of the speech signal: a decomposition that permits a
better characterization of the source. This chapter introduces a new analysis/synthe-
sis algorithm for representing the aperiodic component of the excitation source in
speech signals. This component is decomposed as a sum of random formant wave
forms (FWF), which correspond to formant filters impulse responses. The time of
arrivals of the FWF define the virtual excitation source. The signal is decomposed
in subbands, and, according to the random modulation theory, each passband sig-
nal is represented as an envelope modulating an oscillating term. All parameters
(formant filters and excitation sources) are estimated in the time domain. This new
representation scheme gives a very good fusion of the aperiodic component with the
quasi-periodic component of speech. The method proposed provides new relevant
parameters for manipulating the voice quality features that are linked to noise. For
example, it is possible to perform voice quality modifications such as time scaling,
formant or modulation depth modifications of the aperiodic component, or modifi-
cation of the periodic/aperiodic ratio.

4.1 Introduction

Modeling the excitation source of speech signal is a key problem for speech syn-
thesis. The excitation source encompasses the glottal source (periodic flow and
aspiration noise), frication noise (occurring at a constriction of the vocal tract),
and burst releases (occurring after a sudden release of a closure in the vocal tract).
Voice quality modification, voice conversion, and prosodic processing are highly
dependent on our ability to analyze, model, and modify the excitation source. In the
context of both rule-based and concatenation-based synthesis, it seems important
to develop signal representation methods that are able to deal with natural exci-
tation sources. Traditionally, the most important prosodic parameters are pitch,
duration, and intensity. These parameters are intimately linked to voice quality.
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Other important aspects of voice quality, which have not received as much atten-
tion in synthesis research, are the vocal effort and the phonatory quality. Ideally,
a synthesizer should be able to simulate various types of phonatory styles, the
extreme situations being whispered speech and shouting. To reach this goal, it ap-
pears necessary to deal with various types of excitation, including noise excitation,
which can occur at the glottis or at various locations of the vocal tract.

The analysis and synthesis of the speech noise component has recently become
a focus of interest for several reasons. On the one hand, it is well-known that this
component is responsible for a part of the perceived voice quality (e.g., breathi-
ness, creakiness, softness). There is a long history, especially in the fields of voice
pathology and voice perception, of studies involving parameters such as jitter (ran-
dom variation of the source periodicity), shimmer (random variation of the glottal
flow amplitude), or diplophony. On the other hand, some new results [LSM93],
[DL92] indicate that separate processing of the periodic and aperiodic components
of speech signals may improve the quality of synthetic speech, in the framework of
concatenative synthesis. Finally, for some methods, the two components obtained
seem to be relevant from the acoustic point of view [Cha90, DAY95]: It is possible
to associate the periodic and aperiodic components to physical components in the
voice source. This is important in achieving realistic modifications of the source.

Different terminologies have been used by various authors (e.g., “harmonic
+ noise (H+N) model” in [LSM93], “multiband excitation (MBE) vocoder” in
[GL88] and [DL92], “deterministic and stochastic components” in [SS90]). We
prefer the terminology “periodic and aperiodic (PAP) components.” The precise
meaning attached to the terms “periodic” and “aperiodic” must be discussed in
some detail. The acoustic model of speech production is a source/filter model,
with an excitation sourcee(t) and a filterv(t). An exactly periodic vibration of
vocal chords is not a reasonable assumption, even for sustained vowels, because of
the complex nature of this phenomenon. More accurately, the excitation source can
be decomposed into a quasi-periodic componentp(t) and an aperiodic component
a(t):

s(t) = e(t) ∗ v(t) = [p(t) + a(t)] ∗ v(t). (4.1)

Along this line, the periodic component represents the regular vibratory pattern
of the vocal chords, and the aperiodic component represents all the irregularities
presented in both voiced and unvoiced sounds. It must be emphasized that the
aperiodic component may represent signals of different natures. It is generally ac-
knowledged that both modulation noise (i.e., noise due to the source aperiodicity,
such as jitter, shimmer, andF0 variations) and additive random noise are present
in the aperiodic component. This additive random noise includes transients (e.g.,
bursts of plosives), steady noises (e.g., unvoiced fricatives), or time-modulated
noises (e.g., noise in voiced fricatives or in breathy vowels). Ideally, a decompo-
sition method should be able to separate these different sources of aperiodicity.
However, having solely the speech signals(t), obtaining the two componentsp(t)
anda(t) is not straightforward. For this study, a new PAP decomposition algo-
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rithm is presented, which yields an aperiodic component with a realistic acoustic
meaning [AYD95], [DAY95].

The first step is therefore to achieve an acoustically relevant decomposition.
The second step is to define a model for the aperiodic component. However, poor
modeling of the aperiodic component could introduce a lack of perceptual fusion
between the quasi-periodic component and the aperiodic component. Recent stud-
ies show that this perceptual separation is a consequence of the weak coherence
between these two components in the time domain [Cha90], [Der91]. Therefore,
methods for representing the aperiodic component are needed that provide an ac-
curate control in both time and frequency. In this chapter, a new analysis/synthesis
model for the aperiodic component is introduced. The synthesis method is based
on previous work on the elementary wave form representation of speech [Ale90],
and on speech noise synthesis using random formant impulse responses [Ric92].
Furthermore, this new coding scheme provides relevant parameters for manipulat-
ing the voice quality features that are linked to noise. Breathiness, creakiness, or
roughness of a voice represent such features.

The chapter is organized as follows. The next section gives a detailed description
of the speech signal decomposition algorithm. Section 4.3 introduces the random
formant wave form model and describes the various steps of the analysis/synthesis
algorithm. Section 4.4 presents some evaluation results. Section 4.5 demonstrates
some of the voice modification abilities of the method. Finally, the results are
discussed and some conclusions are suggested in the last section.

4.2 Speech Signal Decomposition

Even though there is a long history of research on aperiodicities in speech, partic-
ularly in the field of voice analysis research, most studies do not explicitly perform
a separation of the two components (a periodic component and an aperiodic com-
ponent), but rather measure a harmonic-to-noise ratio (HNR) to describe different
types of voices (see, e.g., [Hil87, Kro93]).

On the contrary, in the field of speech and music synthesis, explicit PAP decom-
position of signals has become a focus of interest, without paying much attention
to the underlying acoustic or perceptual aspects. Various algorithms based on si-
nusoidal or harmonic models have been proposed. The MBE vocoder [GL88] is
based on linear predictive coding (LPC). The LPC residual signal is coded in the
frequency domain in terms of different frequency bands, which are labeled either
“harmonic” or “noise” depending on their resemblance to ideal harmonic struc-
tures. Although this is an efficient coding scheme, it is difficult, if not impossible,
to interpret the different frequency bands in terms of speech production. In the
H+N model ([SM93]), a low-pass harmonic signal is subtracted from the original
signal. The synthetic noise signal is obtained by modulation by an energy envelope
function of LPC-filtered noise. Nevertheless, in this technique, there is no noise for
frequencies below 2-3 kHz and no harmonics above. Although it might improve
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FIGURE 4.1. Schematized diagram of the PAP decomposition algorithm.

the quality of concatenative synthesis, this is not realistic from the acoustic point
of view. Decomposition methods based on sinusoidal coding have also been pro-
posed [SS90]. Some criteria for harmonicity are applied to the sinusoidal tracks
to form the so-called deterministic component. The remaining frequency points
are associated with the so-called stochastic component. Impressive decomposition
is obtained for both speech and musical sounds. The problem with this approach
is that a binary decision is taken for each frequency point: a region is either “de-
terministic” or “stochastic.” This is not the case in actual speech, where noise is
present even in harmonic regions.

A new algorithm for PAP decomposition has been proposed in [AYD95]. One
of its aims is to obtain an aperiodic component that represents the real features
of speech including voice quality features such as breathiness or roughness. This
algorithm is applied only to voiced frames, the unvoiced frames being merged with
the aperiodic component. Following the voiced-unvoiced decision, this algorithm
may be decomposed into five main steps (see figure 4.1):

• An approximation of the excitation source signal is obtained by inverse
filtering the speech signal (typically 8 kHz sampling rate, 10 LPC coeffi-
cients, 20 ms window size). The excitation source signal is then processed,
on a frame-by-frame basis, using short-term Fourier analysis-synthesis (20
ms window size (200 pt), 5 ms overlap, 512 points fast Fourier transform
(FFT)).

• For each frame, the ratio of periodic to aperiodic frequency points is mea-
sured in three steps, based on [Kro93]:

1. The cepstrum of the original signal is computed.

2. The region of the main peak (pitch) is isolated.
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3. An inverse Fourier transform is then applied to this region. Ideally, the
main peak is a Dirac distribution, and his inverse Fourier transform is a
complex exponential. By considering only the real part of the spectrum,
one obtains a sinusoid whose frequency is given by the location of the
cepstrum main peak. The positive peaks of the sinusoid define the
location of the harmonics, and all other positive values provide an
estimation of the bandwidth of each harmonic. This last information is
particularly important in practice as the cepstrum main peak is not an
ideal Dirac distribution. The remaining part, the negative values of the
sinusoid, provides an indication of frequency points where the valleys
between harmonics are located. These frequency points will serve as
a basis for a first approximation of the aperiodic component.

At this stage of processing, only a primary identification of the frequency
points associated with the aperiodic component is formed and each fre-
quency point is labeled as either periodic or aperiodic.

• The secondary estimation of the aperiodic component is then performed us-
ing an iterative algorithm based on Papoulis-Gershberg extrapolation algo-
rithm ([Pap84]). Starting with the initial estimation, the signal is successively
transformed from the frequency domain to the time domain and back to the
frequency domain, imposing finite duration constraints in the time domain
and the known noise samples in the frequency domain (frequency points in
valleys between harmonics). After a few iterations (10 to 20), the obtained
stochastic component possesses a continuous spectrum with extrapolated
values in the harmonic regions (see figure 4.2). Thus, for each frequency
point the complex values of both periodic and aperiodic components are
available.

• The periodic component is then obtained by subtracting the complex spec-
trum of the aperiodic signal from the complex spectrum of the residual
signal. The synthetic source components are obtained by inverse Fourier
transform and overlap-add synthesis.

• Finally, the two components of the residual signal are filtered by the time-
varying all-pole filter to obtain the final aperiodic and periodic components
of the voiced frames. The complete aperiodic component is obtained by
including the unvoiced frames of the original signal. The result of the PAP
decomposition algorithm is depicted in figure 4.3.

This algorithm was tested using natural and synthetic signals [DAY95]. The
results showed that the PAP decomposition algorithm is able to separate additive
random noise and periodic voicing for a wide range ofF0 variation. Therefore, in
normal natural speech, we feel justified in using the aperiodic component as an
estimate of additive noise in the source, when jitter and shimmer are reasonably
low. This is usually the case for speech synthesis databases. However, in the case
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FIGURE 4.2. The effect of iterative noise reconstruction. The initial estimate of the aperi-
odic component has energy only between harmonic regions (a). After 10 iterations of the
algorithm, a continuous spectrum is obtained (b).
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FIGURE 4.3. Result of the PAP decomposition algorithm: (a) displays the log magnitude
spectrum of one frame of the original signal; (b) and (c) respectively represent the periodic
and the aperiodic components obtained after decomposition.

of large jitter or shimmer values, additive random noise and modulation noise
are merged in the aperiodic component. Although it is still possible to achieve
separation of a periodic and an aperiodic component, it seems difficult in this case
to separate the different physical components of the aperiodic component.

In the following discussion, we make the following assumptions:
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1. The aperiodic and periodic components exist in speech signals. They are not
artifacts due to a signal-processing method.

2. These components represent actual features of speech production that are
linked to voice quality.

3. The components can be measured with accuracy using an appropriate PAP
decomposition algorithm.

Sound example 1of the audio demo (see Appendix) illustrates the results of the
PAP decomposition algorithm on several sentences of natural speech.

4.3 Aperiodic Component Analysis and Synthesis

Several algorithms have been proposed for coding or synthesizing the aperiodic
component of acoustic signals (see, for example, [Kla80, SS90, GL88, MQ92]).
Most use a Gaussian excitation source and a slowly time-varying filter. It is clear
that some time modulation of the aperiodic component is needed for speech because
a white noise excitation source shaped by the spectral envelope of a slowly time-
varying filter is not sufficiently precise in the time domain. As a matter of fact,
it is acknowledged that it is important to take into account the temporal structure
of noises if one wants to obtain a good perceptual fusion of the periodic and
aperiodic components in the final reconstructed signal [CL91, Her91]. In formant
synthesis, it is also common to modulate a noise source by the glottal flow [Kla80].
To trace this time modulation, [LSM93] proposed to time-modulate the high-pass
noise excitation source by the time-domain envelope of the signal. However, this
technique cannot be successfully applied to wideband noises and especially not
for noises with significant energy in the lower part of the spectrum. This may be
due to the fact that the rate of fluctuation of the envelope is of the same order of
magnitude as the rate of fluctuation of the excitation noise signal. In other words,
when some energy is present in the lower part of the spectrum, the maxima and
minima of the time modulation (deduced from the envelope of the original noise
signal) are almost never synchronized with the maxima and minima, respectively,
of the white noise excitation signal. Thus, the precise time-domain control is lost
and the resulting signal has a different modulation structure than the desired one.

Furthermore, for voice modification it may be important to control the spectral
maxima (related to formants) and to get a description of the aperiodic component
as a sum of well-localized spectro-temporal items.

For these reasons, we decided to develop an algorithm in the framework of
source/filter decomposition, in which the filter is decomposed into several formant
filters excited by separate random sources. Within a formant region, the passband
noise signal is described as a random point process, which defines the random
times of arrival of the formant filter impulse responses. The random point process
is deduced from the maxima of the time-domain envelope.
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The formant filters chosen are the Formant Wave Forms (FWF) introduced by
[Rod80], which are close to second-order resonator impulse responses. A FWF is
defined as a modulated sinusoid:

s(t) = 3(t) sin(2πfct + φ) (4.2)

where the FWF time domain envelope is given by:

3(t) =


0 if t ≤ 0
1
2A(1 − cos(βt))e−αt if 0 < t ≤ π/β

Ae−αt if t > π/β

(4.3)

andπ/β,fc,α/π ,A,φ are the excitation duration, the formant center frequency, the
−3 dB bandwidth, the formant amplitude, and the FWF initial phase, respectively.

An iterative algorithm was designed for automatic extraction of both source and
filter parameters. The random excitation source is a set of points along the time
axis, and the filter parameters are FWF parameters.

According to random modulation theory, any passband stochastic signalx(t) can
be represented using the real enveloper(t) and the instantaneous phase 2πfmt +
9(t), wherefm is arbitrary:

x(t) = r(t) cos[2πfm t + 9(t)]. (4.4)

A more detailed theoretical background may be found in [Ric94]. The basic
ideas of the algorithm are:

• to define the excitation point process according to the envelope maxima
locations;

• to compute the FWF envelope3(t) using the enveloper(t) between two
successive minima;

• to estimate the FWF center frequency from the center of gravity of the
instantaneous frequency ofx(t).

More precisely, the analysis/synthesis algorithm is the following (see figure 4.4):

1. Band-pass filtering of the signalx(t) (e.g., 6 bands, for a sampling rate of 8
kHz).

2. For each band-pass signalxb(t):

a. Computation and low-pass filtering of the real envelope, using the Hilbert
transform,x̂b(t) of xb(t):

r(t) =
√

x2
b (t) + x̂2

b (t) (4.5)

b. Definition of the excitation point process according to the real envelope
maxima (see figure 4.5).
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FIGURE 4.4. General diagram of the FWF estimation procedure for one band-pass signal.
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c. Estimation of the FWF envelope parameters by fitting the FWF envelope
and the real envelope between two successive minima of the envelope (t ∈
[tm1, tm2]). This givesα, β, andA.

d. Estimation offc as the optimal frequencyfm in equation (4.4). It is the
weighted average of the instantaneous frequencyfi(t):

fc =

∑
t∈[tm1,tm2] 3

2(t − tm1)fi(t − tm1)∑
t∈[tm1,tm2] 3

2(t − tm1)
(4.6)

where the instantaneous frequency (time-derivative of the instantaneous
phase) is given by:
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fi(t) =
1

2π
× xb(t)x̂b

′(t) − x ′
b(t)x̂b(t)

r2(t)
(4.7)

e. The initial phase,φ, is set as a function offc and β in order to give a
maximum at the exact place defined by the envelope maximum.

f. Subtraction of the FWF envelope contribution outside the analysis window
(that is, fort > tm2).

g. Iteration of steps c–f of the algorithm, until the end of the signal is reached.

3. FWF synthesis is performed using the estimated FWF parameters.

Sound example 2of the audio demo illustrates the results of this algorithm on
the aperiodic component of natural speech signals.

4.4 Evaluation

Perceptual tests (degrading category rating (DCR), see [CCI92]) were run to mea-
sure the quality obtained with the random FWF method compared to the LPC
analysis/synthesis method. Ten subjects were asked to give an appreciation of the
degradation of a synthetic signal (second of a pair) compared with a natural signal
(first of the pair). Four conditions were tested:

Condition 1:Whispered speech (eight sentences of at least 1 s duration, 4 males/4
females).

Conditions 2,3 and 4:Normal speech (eight sentences of at least 1 s duration,
4 males/4 females). Periodic and aperiodic parts were separated. The aperiodic
part was then modeled by either the LPC or random FWF model, scaled by a gain
factor (1, 2, and 3 for tests 2, 3, and 4, respectively) before being added to the
periodic component. The aim of this test was to measure the degree of fusion of
the aperiodic and the periodic components and to test the robustness of this method
when the aperiodic component is modified.

The results of the DCR test are given in figure 4.6. It is noticeable that both
methods show similar results for condition 1 (whispered speech). This is not sur-
prising, as the LPC model is excellent for this type of speech. The results for
conditions 2 to 4 show a greater degradation for LPC than for random FWF. We
think that these results are linked to the better time and frequency accuracy of our
method: formants are well represented, and the time domain control gives a better
perceptual fusion between the periodic and aperiodic components. In fact, the LPC
analysis/synthesis method cannot trace the modulated structures that are present
in the aperiodic component (see figure 4.7).

An informal listening test was also performed to compare the FWF represen-
tation to a simpler representation that takes into account the temporal structure
of the noise. This simpler model (similar to the noise representation used in the
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FIGURE 4.6. Perception test results. X-axis: condition number. Y-axis: average DCR score.
A score of 5 corresponds to the answer “the signals within a pair are equals,” and a score
of 1 corresponds to the answer “the degradation in the second signal is very annoying.”
Stars denote pairs of identical signals. Diamonds denote pairs in which the second signal
is reconstructed using the random FWF method. Squares denote pairs in which the second
signal is reconstructed using LPC analysis/synthesis (from [Ric94]).

H+N model) consists of modulating (by an energy function) the signal obtained
by filtering, with a normalized LPC filter, a white noise excitation source.

Our model seems to better represent the exact temporal structure of the noise
and does not have the audible artifacts that can be seen in the other model (these
artifacts are a consequence of a high amplitude of the excitation source (white
noise) occurring at the same time as a high amplitude of the energy envelope
function) (see figure 4.7). However, it seems that the two methods lead to results
of comparable quality.

4.5 Speech Modifications

At the output of the analysis procedure, the aperiodic component is represented
as a set of elementary wave forms well localized in the spectro-temporal domain.
These wave forms are described by relevant acoustic parameters in the frequency
domain (formant center frequencies, bandwidths, and amplitudes) as well as in
the time domain (excitation times, instants of reference, initial phases) and thus
provide various signal modification abilities.

In the context of realistic speech modifications, it is not sufficient to simply
modify the speech signal. It is necessary to perform only those modifications that
are possible in the speech production process. Although it is possible to separate a
periodic and an aperiodic component, many voice-quality modifications affect both
components. For example, the decay in intensity observed at the end of utterance
results in changes in the glottal wave form, a higher spectral tilt, a lower periodic
to aperiodic ratio, a lower aperiodic signal impulsiveness, etc. On the other hand,
an increased vocal effort results in lower spectral tilt, a higher periodic to aperiodic
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FIGURE 4.7. Time domain wave form of the (top curve) aperiodic component extracted
from the speech signal with the PAP algorithm; (second curve) aperiodic component after
the FWF analysis/synthesis method; (third curve) aperiodic component after the modu-
lated LPC analysis/synthesis method; (bottom curve) aperiodic component after the LPC
analysis/synthesis method.

ratio, a higher aperiodic signal impulsiveness, etc. Our current knowledge of these
kinds of covariation of periodic and aperiodic parameters seems rather limited.

Due to the signal representation method proposed, several types of modification
of the aperiodic components are straightforward. These modification capabilities
are linked to the parameters that are available.

4.5.1 Time Scaling

Time scaling may be performed by simply modifying the reference instant (the
time of generation) of each FWF. The results obtained are fairly good either for
compression or dilation. However, for a large dilation coefficient, a more sophis-
ticated procedure is needed, such as duplication in time of each wave form with
lower amplitudes.

This type of time scaling results in a global dilation or compression of the signals
without affecting the (possible) underlying periodicity of noise modulation.
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4.5.2 Spectral Modifications

Format wave forms are defined by formant parameters. It is therefore easy to
modify these parameters. Modifying formant center frequencies can be achieved
simply by changing the corresponding parameter. It is also possible to change the
formant spectral amplitudes. This allows us to change relevant parameters such
as spectral tilt and noise amplitude in selected regions, and to shift the formants.
These parameters are important for voice quality modification.

4.5.3 Modification of the Aperiodic Component Impulsiveness

For each FWF, it is also possible to control the individual time-domain envelope
through the excitation time and bandwidth parameters. The time-domain envelope
characterizes the modulation structure of the noise. Thus, it becomes possible to
modify the overall depth of the time modulation of the stochastic component.
This has an important consequence in the perceptual point of view as a deeper
modulation gives a rougher voice with an impression of evident vocal effort, and a
smoother modulation gives a softer and more whispery voice. Figure 4.8 illustrates
the modification of the impulsiveness of a synthetic modulated signal produced by
the FWF synthesizer.
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FIGURE 4.8. Modification of the aperiodic component impulsiveness: curve (a) displays
the original synthetic signal; curve (b) gives an example with a deeper modulation structure
obtained by simultaneously increasing the bandwidth and decreasing the excitation time (or
onset time); in contrast, curve (c) gives an example with a smoother modulation structure
obtained by simultaneously decreasing the bandwidth and increasing the excitation time.
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4.5.4 Modification of the Periodic/Aperiodic Ratio

The periodic/aperiodic ratio can be easily modified. This can be done either glob-
ally (for all the formants), or locally (for particular frequency regions). A joint
modification of impulsiveness and periodic/aperiodic ratios makes it possible to
change continuously from voiced to whispered speech.

Sound examples 3 to 6of the audio demo illustrate these various speech signal
modifications using the PAP decomposition algorithm and the FWF model for the
aperiodic component.

4.6 Discussion and Conclusion

The PAP decomposition of the speech signal seems relevant for studying voice
quality features and, in particular, breathiness, roughness, or whisperiness of a
voice. Compared to sinusoidal-coding-based methods, our decomposition method
has the advantage of a better modeling of the aperiodic component. Both periodic
and aperiodic components are defined at each frequency point in the complex
frequency domain. Therefore, there is no binary decision between harmonic or
noise regions, but a variable amount of noise at each frequency. This better reflects
the acoustic reality.

As for aperiodic component coding, a time-frequency elementary wave form
decomposition was preferred to the widely used LPC synthesis scheme.

The algorithm presented in this chapter for the analysis and representation of the
aperiodic component proved to be efficient for modeling this component, including
the strongly modulated segments of it.

Although the synthesized noise quality and naturalness is better with our method
than with a conventional LPC model, the complexity (both in terms of computation
and data rate) is much higher. The aim of this study was to design a technique that
is able to represent noise with accuracy and with various voice quality modification
capabilities, but not to perform a parameter rate reduction. However, the complexity
in terms of data rate does not seem to be excessive for practical synthesis. Typically,
the number of FWF per second is of the order of 1000, which leads to a data rate
of 5000 parameters per second. Furthermore, this data rate can be easily lowered
by suppressing the low-energy FWF. Actually, more than 50 percent of FWF are
nearly inaudible.

The drawbacks of this new analysis-synthesis method are of two types. The
method is more expensive than other methods, especially in terms of computation.
In addition, it depends heavily on the success of the PAP decomposition method.
This decomposition method is acoustically relevant in the case of little random
modulation of the voice source. If this is not the case, it is more difficult to assign
a meaning to the two components, and therefore the speech modification quality
degrades. Unfortunately, it is likely that this last drawback will be shared by all
decomposition methods.
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We think that this first attempt to modify the aperiodic component of the voice
source brings new capabilities for voice quality modification. Therefore it opens
new ways for modeling different voice qualities and different voice styles. It also
offers new challenges because so little is currently known about the production
and perception of the aperiodic component of speech signals.

Acknowledgments:We wish to thank Daniel J. Sinder for reading and commenting
on the manuscript.
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Appendix: Audio Demos

The audio demo contains sound examples, with explanations given.
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