International Workshop on Performative Speech and Singing Synthesis March 14-15, 2011 - Vancouver, BC

Chorus Digitalis: polyphonic gestural singing

Lionel Feugère, Sylvain Le Beux, Christophe d'Alessandro

Introduction -

Chorus Digitalis is a choir of gesture controlled digital singers. It is based on: 1. *Cantor Digitalis,* a real time, gesture controlled singing voice synthesizer, and 2. the Méta-Mallette, an environment designed for collective electronic music and video performances. *Cantor Digitalis* is an improved formant synthesizer, using the RT-CALM voice source model. *Chorus Digitalis* is the result of the integration of voice synthesis in the Méta-Mallette environment. Each virtual voice is controlled by both a graphic tablet and a joystick. Polyphonic singing performances of *Chorus Digitalis* with four players will be given at the conference. The Méta-Mallette and Cantor Digitalis are implemented using Max/MSP.

Cantor Digitalis

Cantor Digitalis

- The synthesizer is based on a source filter model.
- Speaker's characterization: → 3 pitch ranges with their respective source mechanism
 - → **11** speakers differentiated by:
 - The formant filters values
 - Tenseness (related to source parameters open quotient and asymmetry coefficient)
 - Breathiness (modulated pink noise)

Source: RT-CALM Model

- Real-time version of CALM source model of the glottic air f ow wave [1].
- Solutions for extreme pitch values discontinuity:
 - → High sampling rate : $8 \times 44100 Hz$
 - → To avoid aliasing due to oversampling, use of a spline transition band filter with 20 coefficients, from the filter design tools by Vaasko & Välimäki in Matlab.
- Voice Range Profile adapted from previous works [2]:
 - The mechanism is fixed for each pitch range to avoid the mechanisms shift discontinuity.
 - → Spectral tilt slope smoothing prevents big sound level difference between low and high pitch of a same register, to allow larger pitch range than with natural voice.

Filter: 4 parallel resonant filters

- 3 parameters for each formant filter :
- → Gain, central frequency and bandwidth

Source Filter interaction

Formant amplitude attenuation strategy:

→ Decreasing of the formant filters gains when their central frequency coincides with F_0 or one of its 6 first harmonics (see figure).

Synthesized /a/ Spectrum vs fundamental frequency (1) with or (2) without formant filters attenuation strategy

Chorus Digitalis

	Ρ	Pupitres Ajouter / retirer des pupi				upitres : 🔤 🖛 🕇				
MeMaDefault		Config	Instrument	Preset	Nol	nterface	Interface	Mode	Pitch	Volume
	1	Ö 🗆	4SI.Synth∨oye▼	Default	•	1 🕇 Tablet	te graphique 1	▼ direct ▼	0.	100
100	2	Ö LIN	MSI.Synth∨oye▼	Default	•	1 🔭 Tablet	te graphique 2	▼ direct ▼	0. 	100
	З	ÖLIN	4SI.Synth∨oye▼	Default	•	1 🕇 Tablet	te graphique 3	▼ direct ▼	0. •	100
	4	Ç LIN	4SI.SynthVoye▼	Default	•	2 🎽 Joysti	ck 12 boutons 2	▼ direct ▼	0.	100
<u> </u>	5	Ö MN	1.Reve 🔻	Default	•	1 🎽 Joysti	ck 12 boutons 1	▼ direct ▼	0.	100
	6	0	Vide 🔻							
	7	Ö	Vide 🔻							
Note: Section 2018	8	Q	Vide 🔻							
() ()	9	Q	Vide 🔻							
6	10	D 🗘	Vide 👻							
<u>م</u>	1	Ö	Vide 👻		~					
○ ●	12	2 🗘	Vide 🔻		*					
120.	13	3 🗘	Vide 👻							
bpm tps tap	1	4 O	Vide 🔻							
	15	ā 🗘	Vide 🔻							
			Vide 🔻							
+			Vide 🔻							
			Vide 🔻							
129.175.15 @ 129.175.15			Vide 🔻							
onfiguration chef d'orchestre		D 🖸								

• The Méta-Malette (© Puce-Muse) [3]:

→ Enables to play multiple virtual instruments in orchestra with a single or several interconnected computers.

 \rightarrow Each instrument has a dedicated number of Audio & video I/Os that can be linked each one another.

 \rightarrow Ability to easily change control interfaces and mappings.

• Use of the Méta-Mallette to play a virtual choir: the Chorus Digitalis

- \rightarrow Each of the chorus musicians controls one voice synthesizer.
- → Interfaces for each musician:
- Graphic tablet (pitch, vocal effort, register)
- Joystick (vowel, speaker)

• Others control mappings available directly in the Méta-Malette:

 \rightarrow Voice quality, diphonic singing.

Polyphonic Singing

- The *Chorus Digitalis* quartet, composed of 4 musicians, 4 graphic tablets and 4 joysticks, has been recently formed.
- The choir is able to play polyphonic choral music

Screenshot of Méta-Mallette 3.4 software

The Chorus Digitalis quartet

(e.g. Bach chorals or Renaissance polyphonic music), with a limited amount of training.

- We are currently exploring the possibilities of the choir in various types of musical styles.
- Extension of the choir to more voices is planed.

A graphic tablet used to control pitch and vocal effort.

• A digital choir has been developped in Méta-Mallette environment, and will be distributed in the Méta-Mallette library.

 Perspective: perceptual and performance experiments are planed, e.g. F0 accuracy measurements while mimicking a given natural voice, learning to play the instrument for subjects with different musical backgrounds.

References

• [1] B. Doval, C. d'Alessandro, N. Henrich (2003). « *The voice source as a causal/anticausal linear lter ».* In ISCA, editor, Proceedings of Voqual'03, Voice Quality : Functions, analysis and synthesis, Geneva, Switzerland.

• [2] S. Le Beux, "Contrôle gestuel de la prosodie et de la qualité vocale", Thèse de doctorat de l'Université Paris-Sud XI Orsay, France, Décembre 2009.

• [3] S. De Laubier, V. Goudard. "Puce Muse - La Méta-Mallette," Journée d'Informatique Musicale, 2008.