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Abstract
A new method for voice source estimation is evaluated and
compared to Linear Prediction (LP) inverse filtering methods
(autocorrelation LPC, covariance LPC and IAIF [1]). The
method is based on a causal/anticausal model of the voice
source and the ZZT (Zeros of Z-Transform) representation [2]
for causal/anticausal signal separation. A database contain-
ing synthetic speech with various voice source settings and
natural speech with acoustic and electro-glottographic signals
was recorded. Formal evaluation of source estimation meth-
ods are based on spectral distances. The results show that the
ZZT causal/anticausal decomposition method outperforms LP
in voice source estimation both for synthetic and natural sig-
nals. However, its computational load is much heavier (despite
a very simple principle) and the method seems sensitive to noise
and computation precision errors.
Index Terms: speech, lpc, zzt, inverse filtering, benchmark

1. Introduction
Voice source estimation is still a challenging problem for speech
processing applications. Two broad classes of methods have
been proposed so far: digital inverse filtering and source-tract
deconvolution using the Fourier transform. On the one-hand,
the Linear Predictive (LP) based methods take advantage of the
autoregressive structure of the vocal tract acoustic filter. This
filter structure is given by the linear acoustic model of speech
production. LP can be extended to autoregressive and mov-
ing average (ARMA) inverse filter structures, but without clear
improvement in source estimation. On the other hand Fourier
Transform (FT) based methods take advantage of another fea-
ture of the speech production process, namely the multiplica-
tive combination of source and filter in the frequency domain.
For instance, homomorphic deconvolution methods (cepstrum)
use the multiplication to addition transformation property of the
logarithm for spectral envelope estimation. The Group Delay
decomposition method is another Fourier transform based de-
convolution method. Because of difficulties in phase unwrap-
ping, these methods are scarcely used for voice source signal
estimation.

Recently, another feature of speech production process has
been pointed out and a new deconvolution algorithm has been
proposed for exploiting this feature [3, 2].

The first keypoint of this new source estimation is the so-
called Causal Anticausal Linear Model (CALM) of the voice
source. It is shown in [3] that the glottal signal can be consid-
ered as an impulse train filtered by a causal/anticausal linear fil-
ter. Then the source-tract separation problem can be considered

as a causal and anticausal filters identification problem. As for
digital filters, causal (resp. anticausal) poles are placed inside
(resp. outside) the unit circle, a simple criterion can be applied
for sorting causal and anticausal contributions to the spectrum.

The second key point of the separation algorithm is a
method for causal and anticausal component estimation and
separation: the so-called Zero of the Z transform (ZZT) signal
representation [2]. In this method, a Z-transform polynomial is
formed using the (windowed) signal samples of a few speech
periods. Precise centering of the analysis frame on the Glottal
Closing Instant (GCI) is of paramount importance. The roots
of this polynomial are the zeros of the Z-transform. It can be
shown that roots outside (resp. inside) the unit circle correspond
to the anticausal part of the voice source (resp. the causal part
of source and vocal tract). A simple algorithm for source/filter
separation has been proposed in [2]. This new method gave
very promising results. However, to go a step further, a formal
comparative evaluation of the method is needed. The aim of the
present work is a formal evaluation of the performances of the
new method for voice source estimation, and a comparison with
the results of the best inverse filtering method currently used in
speech processing applications.

The paper is organized as follows. In the next section, the
ZZT source estimation algorithm is presented. Three LP-based
inverse filtering methods commonly used for source estimation
are described in section 3. Section 4 reports on our experiments,
based on a database of synthetic and natural speech signals with
variable source parameter settings, and distance measures for
source estimation. Section 5 discusses the results obtained and
section 6 concludes.

2. ZZT source/tract separation
The implementation of the ZZT inverse filtering is based on the
algorithm presented in [2], illustrated on figure 1. The different
steps of the algorithm are as follows :

0. First, GCI points need to be detected, either by syn-
chronous electro-glottographic (EGG) recording analy-
sis or by direct extraction from the speech signal itself.

1. The signal is truncated in two periods frames, using GCI
informations.

2. Each frame is windowed using a two period long black-
man window.



Figure 1: ZZT algorithm, for differential glottal flow waveform
estimation

3. Roots Zi of the associated polynomial P (the frame Z-
transform) are computed :

P (z) =
N−1X

i=0

s(i)z−i = z1−N
N−1Y

i=1

(z−Zi) = z1−N P̃ (z)

4. The zeros are sorted for separation of the anticausal
(G) and causal (F) components of the signal, note that
P (z)||Zi|=1 corresponds to a periodic component, un-
likely to happen in non harmonic spectrum signals :

P̃ (z) =
KY

i=1

(z−Zi)||Zi|>1

N−1−KY

j=1

(z−Zj)||Zj |<1 = G(z)F (z)

5. Causal and Anticausal spectra are computed

6. Glottal flow waveform can therefore be obtained by in-
verse FT.

3. LP based inverse filtering
The other tested methods are based on the Linear Prediction of
speech [4, 5] :

1. The autocorrelation LP algorithm performed on the
whole speech sample as described in [5]. The autore-
gressive filter order used here is 2 + 2 Fs

1000 . (18 at
Fs = 16kHz)

Figure 2: Close up on the differential glottal spectra from a
synthesized speech sample analysis.

The differential glottal flow is obtained by filtering the
speech signal using the inverse autoregressive (AR) filter

g(n) =
NX

i=0

A(i)s(n− i) from [5]

where A(i) are the coefficients of the estimated filter.
2. The covariance LP algorithm. Since this algorithm

can be performed on short speech segments, we imple-
mented a pitch synchronous closed phase covariance es-
timation [6] while assuming Oq at an average closed
phase duration of about 50% of the period. Like the
first one, this algorithm gives the autoregressive vocal
tract filter coefficients then used to obtain the differential
glottal flow as above. The order used here was limited by
the number of samples during the glottal closed phase :
never higher, but sometimes lower than 18.

For those two methods a pre-emphasis filter is used to improve
estimation, with transfer function 1− c1z (c1 = 0.98)

3. Alku’s Iterative Adaptive Inverse Filtering algorithm
[1], which directly estimates the derivative glottal flow.
Knowing that the choice of the pre-emphasis coefficient
is determinant to perform the best vocal tract’s filter es-
timation, an iterative adjustment of the c1 pre-emphasis
coefficient is the key of this method, leading theoretically
to a better estimation of the glottal flow.

4. Experiments
Synthetic test signals are generated using the LF model [7]
rewritten as in [8] and a formant synthesizer with three imple-
mented filters : a synthetic /a/ computed according to common
formant frequencies and bandwidths and two natural filters ob-
tained by lpc analysis : /i/ and /u/.

Open quotient (Oq), Fundamental period (T0) and Asym-
metry (αm [8], corresponding to Tp

Te parameter in the LF model)
are varying among test condition. The remaining parameter, the
return phase quotient, is set to zero as it belongs to the causal
part of the differential glottal flow and can therefore not be es-
timated by ZZT. Preliminary tests showed that the effect of the
return phase quotient on lp-based source estimation is negligi-
ble. This parameter is then not considered in this study.

The test is performed with the following parameter varia-
tions:



Figure 3: Comparison of the 4 methods on a synthetic signal. A synthetic signal (top left) was synthesized by filtering the glottal flow
waveform (top right) by an /i/. The parameters are : F0 = 150Hz, Oq = 0.8 and αm = 0.8. The middle and low rows show the
differential glottal flow estimates for each method.

• F0 (90, 110, 150, 190, 230, 270, 330 Hz)
• Oq from 0.3 to 0.9 by 0.05 steps (13 values)
• αm from 0.6 to 0.85 by 0.05 steps (6 values)
• Vowels among the three chosen (/a/, /i/, /u/)
• Noise/Signal ratio : −300dB (noiseless signal), -60dB

(recording white noise simulation)
A total of 3276 test conditions are computed according to

these parameter variations.
The comparison criterion is based on the quadratic spec-

tral energy difference (E) between the synthesized differential
glottal flow log-magnitude spectrum (Gsynth in dB) and the log
magnitude spectrum obtained by inverse filtering (Gif in dB) on
a given frequency range and for a given method as illustrated on
figure 2.

Lp-based methods lack accuracy for high frequency esti-
mation of the differential glottal flow ; so a reduced frequency
range (0Hz to 4000Hz) is used for computing this error, oth-
erwise, the ZZT decomposition would have been advantaged,
because of its intrinsic absence of return phase :

e =

vuut
4000X

f=0

(‖Gif (f)‖ − ‖Gsynth(f)‖)2

Spectrums are computed on two periods (GCI centered) multi-
plied by a Blackman window. On figure 2, we can see an exam-
ple of error between estimated and original differential glottal
waves spectra. The corresponding errors e are : 10 for autocor-
relation LP, 180 for covariance LP, 6 for ZZT, and finally 23 for
IAIF method.

In order to summarize the results obtained by the 3276 tests,
cumulative errors C are computed for a given set of parameters.
The cumulative error is the mean of e depending on Oq , αm,
f0, vowel, noise (N ) and decomposition algorithm.

C =

P
e(Oq, αm, f0, vowel, noise, algorithm)

card(e)

Figure 4: Comparison of the 4 methods on a real signal. From
the real speech sample (top), the differential glottal flow esti-
mate (left) and glottal flow estimate (right) is reported for each
method. Male speaker, vowel /a/, F0 = 120Hz, EGG measure-
ments gave Oq ≈ 0.5.



vowel /a/
Oq αm autocorr. cov. LP ZZT IAIF
0.3 0.65 56.2 130. 12.6 53.1
0.3 0.8 53.3 114. 14.0 40.3
0.5 0.65 44.6 224. 12.8 52.0
0.5 0.8 36.1 206. 11.3 37.7
0.7 0.65 46.4 145. 29.3 50.2
0.7 0.8 28.0 137. 11.0 44.1

vowel /i/
Oq αm autocorr. cov. LP ZZT IAIF
0.3 0.65 72.0 74.8 24.2 53.3
0.3 0.8 76.6 85.2 15.8 35.7
0.5 0.65 51.6 69.0 16.9 51.5
0.5 0.8 49.1 64.6 18.7 28.1
0.7 0.65 67.1 122. 22.0 69.0
0.7 0.8 34.0 108. 16.4 28.2

vowel /u/
Oq αm autocorr. cov. LP ZZT IAIF
0.3 0.65 66.3 81.3 24.2 68.4
0.3 0.8 73.9 90.7 24.1 64.3
0.5 0.65 58.0 73.9 31.0 71.3
0.5 0.8 48.6 74.6 23.6 39.9
0.7 0.65 63.9 61.2 42.6 82.4
0.7 0.8 35.9 63.9 25.2 31.2

Table 1: Cumulative errors of each method for different values
of open quotient Oq and asymmetry coefficient αm for the three
vowels. Errors are averaged on every fundamental frequency
and noise level. The best results are in bold

5. Results
Direct results of the benchmark are the cumulative spectral dis-
tances presented on table 1. Lowest values represent the closest
spectrum to the original used for synthesis ; note that in every
condition ZZT gives the best result by far, and that IAIF and
autocorrelation LP show both good performances too.

Source estimation examples are presented in figures 3 and
4. Figure 3 presents the estimated source waveforms for a syn-
thetic speech signal /a/. Note that the original synthetic source
is known, and can be compared directly to the estimated source
waveforms. Figure 4 presents source estimations for a real
speech signal. Both glottal flow and its derivative are shown for
each method. An Electroglottographic reference is available for
this example, showing that the open quotient is about 0.5 (i.e.
the closed phase of the source is about half of the period). In
the example, the ZZT is the only method giving a closed phase
of about 0.5.

Spectral distance results and visual inspection of the wave-
forms are leading to the following observations:

− The pitch synchronous covariance linear prediction
seems the worst differential glottal wave estimator. Since it is
performed on a very short signal segment, the autoregressive
filter order may probably be too small for accurate estimation
of the vocal tract filter. Nevertheless, the overall low frequency
restitution of the glottal formant is realist.

− The IAIF methods seems the most robust one tested in
this paper in the sens that it gives good results in almost every
case : the adaptive part of the algorithm appears to be useful for
fitting even the worst signals. However noise and ripples on the

estimated differential glottal waveform make it hardly usable
for parameter extraction or analysis.

− The auto-correlation linear prediction is surprisingly the
better LP-based source estimation in this benchmark. However,
tests on signals are using long analysis window, exploiting the
time invariance assumed by the method. This is not always re-
alistic for actual time-varying real speech signals. Furthermore,
it can be seen on table 1 that the worst cases are those were the
pre-emphasis does not completely suppress the glottal formant :
low Oq values leading to a glottal formant at two or three times
F0, and low values for αm leading to a more resonant formant.

− The ZZT inverse filtering outperforms lp-based methods
both in spectral measurements and time-domain observations.
The absence of ripples in the glottal closed phase together with
the very good benchmark results are the strongest arguments in
favor of this method. On real signals, it is the only one to present
a clearly visible closed phase on glottal flow waveforms (figure
4). The low error values achieved during benchmark make ZZT
the best choice for glottal parameter estimation by model fitting.
However, the method relies heavily on precise glottal closing
instants determination, and it seems also relatively weak for low
signal to noise ratio. Computational load is heavier than for LP
based methods, because it is based on roots extraction from a
high degree polynomial.

6. Conclusion
In this paper a new deconvolution method has been evaluated,
based on an all zero estimation of the speech causal/anticausal
linear model. It was compared with linear prediction based in-
verse filtering. The results showed that ZZT is a promising de-
convolution method, able to outperform LP inverse filtering in
every speech condition. Moreover the ZZT seems to be pow-
erful for estimation of the glottal flow and its parameters, such
as Oq . The main drawbacks being iare computational cost, lack
of robustness for noise corrupted signals and the paramount im-
portance of accurate glottal closing instant detection.
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