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Abstract
In this paper, we propose a new objective evaluation method
for hidden Markov model (HMM)-based speech synthesis us-
ing Kullback-Leibler divergence (KLD). The KLD is used to
measure the difference between the probability density func-
tions (PDFs) of the acoustic feature vectors extracted from nat-
ural training and synthetic speech data. For the evaluation,
Gaussian mixture model (GMM) is used to model the distri-
bution of acoustic feature vectors, including the fundamental
frequency (F0). Continuous F0, obtained with linear interpola-
tion, is used in the evaluation. In essence, the KLD is the ex-
pectation of the logarithmic difference between the likelihoods
calculated on training and synthetic speech. This likelihood dif-
ference is appropriate to characterize the quality of a HMM-
based speech synthesis system in generating synthetic speech
using a maximum likelihood criterion. The objective evaluation
is tested with 3 different HMM-based speech synthesis systems
which use multi-space distribution (MSD) to model discontinu-
ous F0. These systems are trained on a common speech corpus
in French. We propose an index to evaluate HMM-based speech
synthesis system which takes into account the relative variation
of the KLDs on test sets of synthetic and natural speech. This
index correlates inversely with the result of the MOS (mean
opinion score) perceptual test.
Index Terms: HMM-based speech synthesis, Objective eval-
uation, Kullback-Leibler divergence, Gaussian mixture model,
Fundamental frequency (F0)

1. Introduction
Evaluation of speech synthesis system is an active research
topic in speech synthesis. Subjective evaluation is usually used
as the principal quality measure of a speech synthesis system.
However, performing subjective tests is time consuming and,
sometimes, the result is not perfectly reproducible. In contrast,
objective evaluation can be automatically done and is com-
pletely reproducible. There are a number of objective mea-
sures which can be used to evaluate the quality of a speech
synthesis system, for instance the PESQ (Perceptual Evalua-
tion of Speech Quality) [1] or the speech intelligibility predic-
tion based on the model of auditory pre-processing [2]. These
criteria are perceptually-motivated, i.e. the human speech per-
ception mechanism is taken into account in the design of the
objective evaluation. Taking into account the perception of syn-
thetic speech makes it possible to ascertain a given correlation
between objective and subjective evaluations.

Currently, the intelligibility of speech generated by speech
synthesis systems, and particularly by HMM-based speech syn-
thesis system, is rather high [3]. The focus of the evaluation of

HMM-based synthetic speech has therefore shifted towards how
closely a synthetic voice mirrors a human voice [3]. In speech
synthesis system based on HMMs, e.g. HTS [6, 7], the spectral
and excitation parameters for synthesizing synthetic speech are
generated from statistical models, namely the HMMs, which are
trained on natural speech. The models parameters are trained by
maximizing the likelihood of the models on training data. Dur-
ing the parameters generation process, given a word sequence,
the acoustic parameters are generated by maximizing the output
likelihood given the models parameters, obtained from training.
Therefore, evaluating HMM-based speech synthesis using a cri-
terion which takes into account the likelihood of the training
and synthetic data is appropriate. On the other hand, the differ-
ence of likelihoods calculated on natural training and synthetic
speech might mirror the difference between natural and syn-
thetic speech. To the best of our knowledge, there is not yet an
objective evaluation for HMM-based speech synthesis system
based on this criterion.

In this paper, we propose a new objective evaluation method
of HMM-based speech synthesis system which takes into ac-
count the likelihood difference between natural training and
synthetic speech. This objective evaluation makes use of the
Kullback-Leibler divergence [8]. Kullback-Leibler divergence
(KLD) is a measure of dissimilarity between two probability
distributions. It has been successfully applied to outline the mis-
match between training and test conditions in automatic speech
recognition [4, 5]. In our proposition, the KLD will be used to
characterize how well a HMM-based speech synthesis system
generates synthetic speech that mirrors natural speech. The ex-
periments are performed on HMM-based speech synthesis sys-
tems which use maximum likelihood criterion [6].

The paper is organized as follows. Section 2 describes the
principle of the proposed objective evaluation method using the
KLD. The speech corpus for the experiments is introduced in
section 3. Section 4 presents the HMM-based speech synthesis
systems. Objective evaluation results are introduced in section
5. The result of a MOS (mean opinion score) perceptual test is
presented in section 6. Finally, section 7 concludes the paper
and introduces perspectives of the work.

2. Objective Evaluation using the
Kullback-Leibler Divergence

2.1. Kullback-Leibler divergence

In HMM-based TTS (text-to-speech), during the synthesis pro-
cess, an arbitrary given text to be synthesized is first con-
verted to a context-based labels sequence. After that, the
context-dependent HMMs are concatenated to build the sen-
tence HMMs from the labels sequences. The state durations of



the HMMs are calculated by maximizing the output likelihood
of the state durations. In a similar manner, the acoustic feature
vectors, including the dynamic features, are calculated by max-
imizing the output likelihood of the sentence HMMs using the
speech parameter generation algorithm [9]. Indeed, maximum
likelihood is the essential criterion which is used in state-of-the-
art HMM-based TTS, including the generation of the acoustic
feature vectors [6].

The KLD between two probability distributions, or two
probability density functions (PDFs) f(x) and g(x) if the vari-
able x is continuous, is defined as follows:

D(f(x), g(x)) =

∫
f(x) log

f(x)

g(x)
dx (1)

where f(x) is the reference PDF. In essence, the KLD is the ex-
pectation of the logarithmic difference between the likelihoods
calculated with f(x) and g(x). If the PDFs f(x) and g(x)
are the global PDFs of the natural and synthetic speech, respec-
tively, this divergence would be able to measure how well the
synthetic speech mirrors the natural one, based on the difference
of the global likelihoods.

2.2. GMM-based acoustic modeling for objective evalua-
tion

In general, an acoustic feature vector x of an HMM-based TTS
system consists of spectral and excitation features along with
their dynamic features (delta and delta-delta coefficients) [6].
In a standard HMM-based TTS system, the modeling of the
fundamental frequency (F0) is not trivial due to the disconti-
nuity of F0 values across unvoiced regions. Generally, the F0
values in the unvoiced regions cannot be estimated, using stan-
dard F0 estimation algorithms [10, 11], and they are assumed to
be undefined in these regions. The discontinuity of F0 makes
it impossible to correctly model it using a simple continuous
distribution, for instance the Gaussian Mixture Model (GMM).

The multi-space distribution HMM (MSD-HMM) [12] pro-
vides a solution to this problem by using a combination of
discrete and continuous distributions and it is now the default
modeling approach in state-of-the-art HMM TTS system [6, 7].
Within the MSD-HMM modeling framework, the state output
distribution b(f0) of the F0 has the following form [13]:

b(f0) =

{
λN (f0, µ, σ) if f0 ∈ voiced region
1− λ if f0 ∈ unvoiced region

where f0 is the observation of F0, λ and 1−λ are the probabil-
ities of voiced and unvoiced regions, and µ and σ are the means
and variances of the Gaussian distribution of F0 in the voiced
regions. Good speech synthesis performance could be achieved
with the MSD-HMM. However, if the distribution of the acous-
tic feature vectors is modeled with MSD, the calculation of the
KLD would be not readily feasible since, to our knowledge,
there are no existing algorithms which permit to calculate the
KLD between the MSDs.

In this paper, for the sake of the calculation of the KLD, we
simplify the acoustic modeling within the objective evaluation
by using the Gaussian mixture model (GMM) to model the dis-
tribution of the acoustic feature vectors x. Hence, the form of
f(x) is defined as:

f(x) =
M∑
δ=1

λδN (x, µδ,Σδ) (2)

for x ∈ voiced and unvoiced regions. In equation (2), λδ, µδ
and Σδ are the prior probability, mean vector and covariance

matrix, respectively, of the δth multivariate Gaussian compo-
nent N (x, µδ,Σδ) in the GMM consisting of M Gaussian
components. Using GMM to model the distribution of the
acoustic feature vectors needs the F0 (and the ∆ and ∆∆ of
F0) to be continuous. To this end, we use linear interpolation to
interpolate the values of F0, and the ∆ and ∆∆ of F0, in the un-
voiced regions. A continuous F0 has advantages. Indeed, it has
been shown that an HMM based speech synthesis system us-
ing a continuous F0 produces more expressive F0 contours than
one based on the MSD [13, 14]. However, in this work, con-
tinuous F0 and GMMs are used only for the evaluation. Inside
the HMM-based TTS systems, the MSDs are used for acoustic
modeling. An example of continuous F0 values of an utter-
ance, obtained after linear interpolation, is shown in Fig. 1. The
original F0 values (blue line) is taken from the acoustic feature
vectors extracted by an HMM-based TTS system. The continu-
ous F0 values (red line) are obtained by linear interpolating the
original F0 values. The continuous F0 is modeled with GMMs
for the objective evaluation using KLD.

Figure 1: Example of continuous F0 (red line), obtained by lin-
early interpolating the discontinuous one (blue line), from an
utterance in the speech corpus. Continuous F0 is used only for
the objective evaluation.

2.3. Kullback-Leibler divergence between GMMs

The calculation of the KLD between the GMMs is not analyti-
cally tractable. Amongst the currently available methods [15],
Monte Carlo sampling is the sole method that can calculate the
KLD between GMMs with arbitrary accuracy. We thus apply
the Monte Carlo sampling method to calculate the KLDs be-
tween the acoustic feature vectors global PDFs which are mod-
eled with GMMs. Indeed, the equation (1) can be rewritten as

D(f(x), g(x)) = Ef
[
log

f(x)

g(x)

]
where E is the mathematical expectation. This expectation
can be approximated by generating N independent identically
distributed (i.i.d) random vectors xi, i = 1, . . . , N following
the PDF f(x), and then, by calculating the empirical mean of
log[f(xi)/g(xi)], i = 1, . . . , N since

1

N

N∑
i=1

[
log

f(xi)

g(xi)

]
→ Ef

[
log

f(x)

g(x)

]
when N → +∞. To generate a random i.i.d vector fol-
lowing the PDF f(x) which is a GMM, a random indicator
δ ∈ 1, . . . ,M is generated following the a priori probabilities
λk, k = 1, . . . ,M . Then, the random vector xi is generated
from the corresponding Gaussian componentN (x, µδ,Σδ).

3. Speech Corpus
The experiments in this paper use a natural speech corpus in
French consisting of 1155 utterances. The sentences in the cor-
pus are phonetically balanced according to phones, diphones



and triphones segmentations. All the sentences in the corpus
have been recorded with a native male voice in a slow reading,
neutral expression with moderate hyper-articulation. The utter-
ances have been recorded using a dynamic microphone with a
cardioid polar pattern at sampling frequency of 48 kHz and 16
bits resolution. Subsequently, the utterances have been down-
sampled to 16 kHz. The corpus has been labeled either automat-
ically by using the E-HMM (ergodic HMM) labeler of Festvox
[17] or manually by a human. The average duration of each ut-
terance in the corpus is around 3 seconds. The corpus is divided
into training and test sets. The training set consists of 1115 ut-
terances and the test set consists of 40 utterances. These two
sets are not overlapped.

4. HMM-based TTS Systems
The KLD is applied to evaluate the quality of three different
French HMM-based TTS systems trained on this corpus. These
3 HMM-based TTS systems have been implemented based on
the HTS (HMM-based speech synthesis system) toolkit [7].
They are denoted as TTS1, TTS2 and TTS3. The 3 systems
share the same standard structure, including the natural lan-
guage processing (NLP), training and synthesis components
[16]. In this work, the systems TTS1 and TTS3 are implemented
within the Festival TTS platform [18] using the labels aligned
manually. The only difference between the implementation of
these two systems is the amount of acoustic training data. The
system TTS1 uses 1115 utterances in the training corpus for
training acoustic models. The system TTS3 uses only 300 out
of the 1115 utterances in the training corpus for acoustic mod-
els training. Indeed, the purpose is to evaluate the impact of the
amount of acoustic training data on the quality of the HMM-
based TTS systems. The TTS1 and TTS3 systems use a com-
mon NLP component which is adapted from the Festival TTS
platform to French language. This NLP component extracts 49
contextual factors which are inspired from [19] and adapted to
French language. In fact, from 53 general contextual factors
proposed in [19], the 7 factors related to the stress lexical ac-
cents have not been used. On the other hand, we add 3 contex-
tual factors related to the syllable situation, for instance: end
of sentence, breathing, end of word, end of word comprising a
liaison with the next word, middle of word. There are finally 49
contextual factors in total.

The system TTS2 is trained with 1115 utterances from the
training speech corpus, the same as those used for training the
system TTS1, with the labels aligned automatically by using
the E-HMM labeler. However, it differs from the TTS1 and
TTS3 in the NLP component. Actually, the NLP component of
the TTS2 system extracts only 19, amongst 53 [19], contextual
factors from the text. These 19 contextual factors were selected
based on the particularities of the French language. The purpose
is to evaluate the impact of the contextual factors on the quality
of HMM-based TTS system [20].

The three TTS systems use the HTS toolkit [7] for train-
ing context-dependent HMMs. The training of the context-
dependent HMMs utilizes the acoustic features, extracted every
5ms from the training utterances using the SPTK toolkit [21],
and the labels from the training corpus. The acoustic features
include mel-generalized cepstrum (MGC) coefficients, the log
of F0 and their ∆ and ∆∆ coefficients. The duration is also
modeled within the HMMs. In the synthesis, speech waveform
is synthesized directly from the generated MGC coefficients and
F0 values by using the MLSA filter [7]. The speech synthesis
component of each TTS system takes the contextual factors ex-
tracted from input text using the corresponding NLP.

5. Objective Evaluation Results
5.1. Objective evaluation experimental protocol

Each TTS system is used to synthesize 40 synthetic utterances
having the same linguistic contents of the utterances in the test
set consisting of 40 natural utterances (see section 3). These 40
utterances have the same nature of those used for the training,
i.e. the utterances are phonetically balanced and have 3-second
average duration. The total duration of 40 testing utterances
is around 2 minutes. In the evaluation, for each TTS system,
acoustic feature vectors are extracted from the training and syn-
thetic data every 5ms. An acoustic feature vector x has 108
dimensions which consist of 35 MGC coefficients, the log(F0)
along with their ∆ and ∆∆ coefficients. From the training cor-
pus of 1115 utterances, around 711K acoustic feature vectors
are extracted for estimating the reference PDF f1(x) and f2(x)
of the system TTS1 and TTS2, respectively. With the system
TTS3 using 300 utterances for training, around 185K feature
vectors have been extracted from the training speech to estimate
its reference PDF f3(x).

From the 40 synthetic utterances, around 24K acoustic fea-
ture vectors are extracted. Around 24K feature vectors have
also been extracted from the 40 natural utterances. The fea-
ture vectors extracted from the sets of 40 synthetic utterances,
synthesized by the systems TTS1, TTS2 and TTS3, are used
to estimate the PDFs gS1(x), gS2(x) and gS3(x), respectively.
The feature vectors extracted from the natural speech set, us-
ing the feature extraction of the system TTS1, TTS2 and TTS3,
are used to estimate the PDFs gN1(x), gN2(x) and gN3(x),
respectively. The acoustic feature vectors, extracted during the
evaluation, are the same as those extracted and generated during
the training and synthesis, i.e. the F0 is undefined in unvoiced
regions. However, the feature vectors, extracted from the same
natural speech set by using different feature extractors, might
be slightly different since the TTS systems are developed at dif-
ferent sites.

The PDFs f(x) and g(x) are modeled by using GMMs
of 16 Gaussian components with diagonal covariance matrices
(M = 16). As mentioned in section 2.2, the F0 is linearly in-
terpolated to be continuous so that the acoustic modeling using
the GMMs is applicable for the evaluation. For i = {1, 2, 3},
the KLDs DSi are calculated between fi(x) and gSi(x), and
the KLDs DNi are calculated between fi(x) and gNi(x). The
KLD between the GMMs are calculated by using the Monte
Carlo sampling method (see section 2.3). In our experiments,
N = 100K vectors are randomly generated following the ref-
erence PDF fi(x) of each TTS system and the KLDs are cal-
culated by using these vectors. The expectation-maximization
(EM) algorithm [22] is applied once on the training data to esti-
mate the GMMs fi(x), i = 1, 2, 3. However, the EM algorithm
is initialization-dependent [22]. Therefore, in each KLD calcu-
lation, e.g. the DSi between fi(x) and gSi(x), we apply the
EM algorithm 50 times on the same test data (synthetic data of
the ith TTS system) to get 50 variational versions of gSi(x).
After that, the KLD DSi is defined as the average of the 50
KLDs calculated between fi(x) and the 50 variational versions
of gSi(x). The standard deviation of DSi is also calculated
from these 50 KLDs.

5.2. Numerical results

Figure 2 shows the numerical results of the KLDs calculated
for three systems, TTS1, TTS2 and TTS3. It can be observed
that, in each TTS system, the KLD of synthetic speech is larger
than that of the natural speech. That is, the KLD, calculated



in this manner, has the ability to distinguish between synthetic
and natural speech. Further, it can be observed that the DN1

andDN2 are different even though the systems TTS1 and TTS2

use the same sets of natural speech for training and test, and
the same type of acoustic feature vector is used. This difference
can be explained from the fact that the TTS systems have been
developed in different sites with slight differences in the pre-
processing of the audio data. However, these differences raise
the difficulties in comparing directly the KLDs calculated on
different TTS systems.

Figure 2: Kullback-Leibler divergence (KLD) calculated be-
tween the PDFs of the training and test (synthetic and natural)
speech of three systems TTS1, TTS2 and TTS3. Error bars rep-
resent the standard deviations.

5.3. System evaluation index

We thus propose a system evaluation index (SEI) I , based on the
KLDs calculated on synthetic and natural speech of an HMM-
based TTS system, to evaluate the overall quality of the system.
The expression of I is as follows:

I = DN

(
1− DN

DS

)
(3)

where DN and DS are the KLD calculated between the refer-
ence PDF f(x) and the PDFs gN (x) and gS(x) of test sets con-
sisting of natural and synthetic speech, respectively. In equation
(3), DN is used as a multiplication factor since it represents the
quality of the acoustic training data and of the acoustic feature
vectors used by a TTS system. The smaller the DN , the bet-
ter the TTS system. On the other hand, the ratio DN

DS
≤ 1

since DN ≤ DS in general (and also as observed empirically).
The closer the DS moves towards the DN , the better the TTS
system. Therefore, the smaller the index I , the better the TTS
system. In an ideal system, I = 0 when DS = DN .

Calculating the index Ii using the values DNi and DSi,
i = {1, 2, 3} of the three systems TTS1, TTS2 and TTS3, we
have I1 = 2.05, I2 = 2.35 and I3 = 2.57, i.e., the order of
the three systems following their overall quality is: TTS1 >
TTS2 > TTS3.

6. MOS Perceptual Test
A MOS (mean opinion score) perceptual test is performed to
evaluate subjectively the quality of the three TTS systems.
From 40 utterances of synthetic speech synthesized by each
TTS system, 21 utterances are selected for the perceptual test.
The selected utterances are the same for three TTS systems and
natural speech. Amongst 21 utterances, one is used at the be-

ginning of the listening session in order to present the listeners
with the quality of the sounds they will have to judge. The
20 remaining utterances are used for the perceptual test. From
three TTS systems and the natural speech, 84 utterances were
selected and presented to listeners in a random order (the scores
of the first 4 utterances for familiarization were not counted).

Figure 3: MOS scores (a) and the system evaluation indices I
(b) of three systems TTS1, TTS2 and TTS3. Error bars of the
MOS scores indicate 95% of the confidence intervals.

Nine subjects participated in the test. They had to rate the
overall quality of each utterance, based on a scale from 1 to 5 (1-
Bad, 2-Poor, 3-Fair, 4-Good, 5-Excellent). A two-way ANOVA
was run on the result. The two factors were the TTS system
(4 levels) and the utterances (20 levels). The two factors have
significant effects, as single factor, on the MOS score. The
interaction is not significant. The TTS system factor explains
most of the observed variance (η2 = 0.63). A post-hoc Tukey
test groups the systems into 3 groups of homogeneous levels
of perceived quality, ordered by descending levels of the MOS
scores: natural speech, TTS1 and TTS2, and TTS3. The MOS
scores and the system evaluation indices (SEIs) I are shown in
Fig. 3. It can be observed from the Fig. 3 that, the SEIs cor-
relates inversely with the MOS scores (correlation coefficient
equals −0.93). Indeed, the smaller the SEI, the better the sys-
tem, whereas, the larger the MOS score, the better the system.

7. Conclusion and Perspectives
We have proposed to use Kullback-Leibler divergence for the
evaluation of the overall quality of HMM-based speech synthe-
sis system. The KLD is calculated between the global PDFs,
which are GMMs, of the acoustic feature vectors extracted from
natural training and synthetic speech data. Experimental re-
sults have shown that the KLD calculated on natural speech is
substantially smaller compared to that calculated on synthetic
speech synthesized by an HMM-based TTS system. We have
proposed a system evaluation index (SEI) to evaluate the over-
all quality of an HMM-based TTS system. This index is based
on the KLD, calculated on a test set of natural speech, and the
relative variation of the KLDs calculated on test sets of syn-
thetic and natural speech. Experimental results have shown that
the SEI correlates inversely with the MOS score obtained by
perceptual test. Future work would investigate the use of this
method to evaluate HMM-based TTS systems using different
vocoders, for instance STRAIGHT [23].
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