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Effectiveness of a Periodic and Aperiodic
Decomposition Method for Analysis of Voice Sources

Christophe d’Alessandro,Member, IEEE,Vassilis Darsinos, and B. Yegnanarayana,Senior Member, IEEE

Abstract—Decomposition of speech into periodic and aperiodic
components is useful in analyzing and describing the charac-
teristics of voice sources. Such a decomposition is also useful
in controlling the excitation source for synthesis. This paper
addresses the issue of decomposition of speech into periodic and
aperiodic components in the context of speech production. The
effectiveness of a recently proposed algorithm for decomposing
speech into these components is examined for analysis of voice
sources. Synthetic signals are generated using formant synthesis.
Different sources of aperiodicity encountered in normal speech
production are considered, using a set of parameters to control
the synthetic signals. The sources of aperiocity studied are 1)
additive pulsed or continuous random noise, and 2) modulation
aperiodicities due to variation in the fundamental frequency,
jitter, and shimmer. Three types of measures are used to charac-
terize these voices: ratio of energies in the periodic and aperiodic
components, perceptual spectral distance, and spectrograms. The
results demonstrate the effectiveness of the periodic–aperiodic
decomposition algorithm for analyzing aperiodicities for a wide
variety of voices, and point out the limitations of the algorithm.

Index Terms—Jitter, periodic and aperiodic decomposition,
shimmer, voice quality assessment, voice source analysis.

I. INTRODUCTION

SEPARATION of signals into periodic and aperiodic com-
ponents is an important issue in signal processing, es-

pecially in speech and music. Processing methods for the
separation have been explored for speech coding [1], speech
synthesis [2]–[5], voice analysis [6]–[10], and musical acous-
tics [11], [12]. An important question in the context of speech
is whether these components represent features of speech
production or whether they are merely convenient tools for
the representation of the signal. Although much effort has
gone into the development of algorithms for analysis of
speech in terms of periodic and aperiodic components, few
studies performing an actual separation of the components
signals have been reported emphasizing the relevance or
acoustic significance of such a separation. If these components
signals can be associated to acoustic components, then it
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may be possible to refine the models of the vocal source by
incorporating the aperiodic component also.

In this paper, we shall study the effectiveness of a recently
proposed method of decomposition for analysis of voice
sources [13]. The periodic–aperiodic (PAP) decomposition
algorithm is discussed in detail in a companion paper [14].
In our study, we associate the periodic component with the
“deterministic” part, and the aperiodic component with the
“stochastic” or “random” or “noise” part of the excitation
signal. The algorithm attempts to separate the contributions of
the individual components of the signal at each sample point
in the time and frequency domains.

The following model of speech production for voiced speech
is assumed for analysis and synthesis:

(1)

(2)

(3)

where

• is the speech signal, and is the Fourier trans-
form (FT) of ;

• is the impulse response of the vocal tract system,
and is the FT of ;

• is the excitation signal;
• is the quasiperiodic part of the excitation, and

is the FT of ;
• is the random part of the excitation, and is the

FT of .

The magnitude of the FT is represented byand the phase
as The symbol is used to denote convolution. The
aperiodic component can be associated with different situations
in speech production. For unvoiced segments, the periodic
component reduces to zero. Two sources of aperiodicity in
voiced speech signals can be identified (see, for instance, [8]):
1) additive random noise and 2) modulation aperiodicity.

• Additive random noise: This source of aperiodicity repre-
sents frication or aspiration noise. This type of noise is
termedadditivebecause the noise source is superimposed
onto the voice source. This type of noise is present
in segments of voiced fricatives or breathy vowels [9],
[15], [16]. Depending on the location of the source of
noise in the vocal apparatus, this noise is aspiration noise
(generated at the glottis, e.g., vowels, especially when the
glottal closure is incomplete), or frication noise (generated
at a constriction in the vocal tract, e.g., voiced fricatives).
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Because of the different location of the source of noise,
aspiration and frication noises have different spectral
properties. Typically, frication noise is a highpass noise,
and aspiration noise is spread over the whole spectrum.
The noise source can be continuous or pulsed (gated noise
source).

• Modulation aperiodicity: Modulation aperiodicity is a re-
sult of variation in the periodicity of the glottal excitation.
Aperiodicity may be introduced due to random variations
in the duration (jitter), or the peak amplitute of signal
periods (shimmer). Aperiodicity may also be introduced
due to voluntary changes in the source characteristics as
in prosody, and in formant transitions.

In addition, aperiodicity in the signal may also be observed
in speech processing due to the effects of finite windows,
discretization in amplitude (quantization) and time (sampling),
and inadequacy of the speech production model. This type of
aperiodicity may be termedcomputational noise.

These sources of aperiodicity are not equally significant.
Ideally, a decomposition method should be insensitive to
prosodic and spectral variations. The method should also
minimize computational noise, and it should be robust. In this
paper, we study the performance of a decomposition algorithm
proposed in [13] and [14] to analyze various sources of
aperiodicity in speech signals. We also discuss the limitations
of the algorithm, so that the results of voice source analyses
can be interpreted meaningfully.

Section II describes the method used for characterizing
voice sources. We first describe the set of test signals used in
this study. Different types of voice source signals are simulated
through these test signals. The measurement methodology is
then presented. We briefly describe the algorithm used for PAP
decomposition, and we define the measures used to character-
ize voices in terms of their periodic and aperiodic components.
In Section III, we discuss the results of decomposition on
the test signals for characterizing the different types of voice.
Section IV concludes the paper.

II. M ETHOD

A. Test Signals

Using natural speech for systematic evaluation of source
parameters is difficult, because speakers producing the test
material typically cannot control the source characteristics
over a desired range of variation. This lack of control on
production is even more difficult for voice characteristics
related to additive noise, jitter, and shimmer [10].

Therefore, synthetic speech is used for evaluation in the
present study. It is possible to separately generate the periodic
and aperiodic components, and then add them to generate
the synthetic speech signal. This will enable us to compare
the components derived using the decomposition algorithm
with the components in the synthetic signal. Each test signal
can be described on the basis of six different components:
synthetic aperiodic component (SAC) containing the additive
noise, synthetic periodic component (SPC), extracted aperiodic
component (EAC), extracted periodic component (EPC), and

the signals obtained by summation of the SAC and the SPC,
and by summation of the EAC and the EPC. It must be noted
that the SAC contains only the additive random noise. Thus,
modulation aperiodicity is included in the SPC. Eventually,
both sources of aperiodicities are present in the EAC.

Synthetic signals are generated using formant synthesis.
Two different computer programs are used for synthesis. The
first one, based on the Klatt synthesizer [18], is used for all
test signals, except for those involving jitter and intonation. It
is called in the followingserial formant synthesizerbecause
we used only the serial branch for our stimuli. For the
jitter and intonation cases, a time-domain parallel formant
synthesizer (based on elementary waveforms [19]) is used,
because it is necessary to compute the fundamental frequency
very accurately. It is called in the followingparallel formant
synthesizer. In the Klatt synthesizer [18, p. 975], quantization
of the fundamental period to an integral number of samples is
not accurate enough for computing small jitter values, or for
obtaining accurate pitch glides.

For the Klatt synthesizer, the synthesis model has two
parts, one corresponding to the glottal source and the other
to the vocal tract system. The radiation effect is included in
the source part, by taking the first derivative of the glottal
waveform. The synthetic vowel /a/ is chosen in the present
study. The serial formant frequencies and bandwidths for the
four formants are (700 Hz, 100 Hz), (1200 Hz, 200 Hz), (2300
Hz, 250 Hz), and (3500 Hz, 300 Hz). The glottal source signal
is modeled using the Liljencrants–Fant (LF) model [17]. The
set of parameters chosen for this model is as follows.

: fundamental period (varying among test signals).
: rise time of the flow pulse for all the

test signals).
: time of the maximum peak of the flow derivative

for all the test signals).
: amplitude of the maximum peak of the flow derivative

(this parameter defines the amplitude of the synthetic
signal is normalized for all the test signals).

: related to the time of the return phaseof the flow
derivative for all the test signals).

The reader is referred to [17] for a detailed description of the
LF model. A Gaussian random number generator is used for
noise sources. Fig. 1 gives an example of synthetic excitation
signal consisting of the glottal flow component, the additive
noise component, and the excitation signal.

The parallel formant synthesizer is used for the shimmer
and intonation experiments. In this case, the parallel formant
frequencies, bandwidths, and amplitudes for the four formants
are (650 Hz, 78 Hz, 0 dB), (1100 Hz, 88 Hz,8 dB), (2900
Hz, 133 Hz, 11 dB), (3300 Hz, 130 Hz, 20 dB). The glottal
source is controlled in frequency domain by the spectral tilt,
and by an extra low-frequency glottal formant, with formant
frequency, bandwidth, and amplitude of (10 Hz, 400 Hz,4
dB). No additive noise is present in the source with this
synthesizer.

Jitter, shimmer, and additive noise are controlled in com-
bination with variations of the fundamental frequency to
generate the test signals. The duration of the synthetic signals
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Fig. 1. Illustration of a synthetic signal (serial formant synthesizer). From
top to bottom: glottal flow component; additive random noise; glottal flow+
additive random noise component (excitation signal); synthetic vowel /a/. F0
= 80 Hz, HNR= 5 dB, noise burst duration= 60% of T0.

is 0.4 s. Following are the parameters used to control different
types of voices.

1) Input harmonic-to-noise ratio: Four input harmonic to
noise ratio levels (HNR, i.e., SPC to SAC energy ratio
level) are used: (no noise), 20, 10, and 5 dB. A
few trial runs of the speech synthesis program are made
in order to obtain the desired HNR level in the signal,
independent of the fundamental frequency and the glottal
source parameters. The noise amplitude is varied to real-
ize the desired HNR levels. The fundamental frequency
(F0) is fixed for a given signal, and is varying among
different signals, as it is described in the following. The
serial synthesizer is used.

2) Noise burst duration: The SAC consists of a burst of
noise for a duration of either 60% or 100% of each
pitch period. This noise burst is centered around the
instant of maximum excitation. The noise burst is a
gated white Gaussian noise signal. This choice for
the noise source is dictated by previous studies on
synthesis and perception experiments [16], [20]. Glottal
turbulence noise is commonly assumed to result from
a combination of high air flow velocity and imperfect
glottis closure, and can be more or less modulated.
An example of the synthetic excitation signals is given
in Fig. 1. Each of these signals is generated with a

fixed fundamental frequency value. Different excitation
signals are generated by varying the F0, HNR level, and
duration of burst. For each of the three HNR levels and
two duration values, 12 values of F0 are used to generate
a total of 6 12 72 test signals. In addition, the noise-
free test signal HNR level) is also generated using
each of the twelve F0 values. Thus, the total number of
test signals in this category is 72 12 84. The serial
synthesizer is used.

3) Jitter: Jitter is defined as the maximum perturbation of
F0. Jitter values of 0.00, 0.25, 0.50, 1.00, 1.50, 3.00, and
5.00% are used. They are expressed as a percentage of
the duration of the pitch period. Large values for jitter
variation are also considered in this study, because they
may be encountered in pathological voices. However,
jitter in normal voices is generally less than 1% of
the pitch period [15], [21]. These signals are generated
without additive noise, by varying the average F0 in the
range 80–300 Hz. Seven values of jitter are combined
with twelve F0 values, yielding to a total of 7 12
84 test signals. The parallel synthesizer is used.

4) Shimmer: Shimmer values of 0.5, 1.0, and 1.5 dB are
used. These values represent the maximum range of peak
amplitude change in the signal (and thus the maximum
variation in peak amplitudes of successive signal pe-
riods). Large values for shimmer are also considered
in this study, because they may be encountered in
pathological voices. However, shimmer in normal voices
is generally less than about 0.7 dB [22]. These signals
are generated without additive noise, by varying the
average F0 in the range 80–300 Hz. Three values of
shimmer are combined with twelve F0 values, yielding
to a total of 3 12 36 test signals. The serial
synthesizer is used.

5) Fundamental frequency: For each input HNR and burst
duration condition, and for each jitter or shimmer con-
dition, fundamental frequency is fixed. F0 was varied
among the signals in 12 steps in the range 80–300 Hz
(80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280,
300 Hz).

6) Fundamental frequency changes: Variation of F0 during
an analysis frame is another source of modulation ape-
riodicity. This situation is normal in natural speech due
to intonation. The effect of these variations is studied
using a set of synthetic signals, in which the slope of
F0 is varied in the range 0–24 SemiTones per second
(ST/s) in seven steps: 0, 1.5, 3, 6, 12, 18, 24 ST/s. Two
conditions are used for the baseline frequency, 100 Hz
and 200 Hz. These conditions correspond roughly to the
pitch variations due to intonation in normal speech. A set
of 14 test signals is generated. The parallel synthesizer
is used.

Thus, a total of 218 synthetic test signals are generated
for studying the influence of additive noise and modulation
aperiodicities due to jitter, shimmer and F0 changes, in the
F0 range of normal male and female speech. Table I gives a
summary of the test signals used in this study. All signals are
generated at a sampling rate of 8 kHz.
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TABLE I
SUMMARY OF TEST SIGNALS USED FOR VOICE SOURCE CHARACTERIZATION

B. Algorithm for PAP Decomposition

This section gives a summary of the PAP decomposition
algorithm proposed in [13]. Details on the properties of this
algorithm can be found in [14]. The complex addition in (3)
suggests the importance of both the magnitude and phase of
each of the components in the signal. Also, both the periodic
and aperiodic components are present at each frequency. The
proposed decomposition algorithm used for measurements of
EAC and EPC is illustrated in Fig. 2. It contains the following
steps.

1) Extraction of linear prediction residual: The objective is
to separate the components of the source. The method
chosen for computing an approximation to the excitation
part of the signal is linear predictive (LP) analysis [23]
(discrete signals are considered now). The LP residual
is obtained by passing the speech signal through a tenth-
order inverse filter. The LP residual is associated to the
excitation signal, and is denoted by A frame length
of 20 ms and a frame rate of 100 frames/s are used in
the LP analysis.

The LP residual signal is decomposed into short
overlapping analysis frames, using a Hamming window.
A 255 points 32 ms) window is used, and the frame
rate is 200 frames/s for the short-term excitation signal
decomposition. A short-time spectrum is com-
puted for each frame, using a 512-point discrete Fourier
transform (DFT)

(4)

where is the discrete-time excitation signal, is the
hop size in number of samples (the spacing between
analysis frames), is the frame index, is the fast
Fourier transform (FFT) size, and is the analysis
window.

2) Identification of frequency regions of the aperiodic com-
ponent: Both periodic and aperiodic components con-
tribute to the DFT coefficients. In the first stage of
processing, we identify a subset of the DFT coefficients
to form an approximation to the aperiodic component.
For this purpose, we determine approximately the fre-

quency regions contributing to the harmonic part and
the frequency region contributing to the noise part. This
is accomplished by marking the region in the cepstrum
corresponding to the vocal tract system, and the regions
corresponding to the harmonic and noise parts of the
excitation [10]. Because of their distinct nonoverlapping
regions in the frequency domain, distribution of energies
for each of these components in the frequency domain
can be obtained. From these distributions, it is possi-
ble to determine the ratio of the harmonic and noise
components at each discrete frequency point.

3) Reconstruction of the aperiodic signal using an iterative
procedure: The knowledge of the ratio of the harmonic
to noise parts at each frequency point does not enable us
to separate the two components by subtraction, because
at each frequency point there is contribution due to both
the periodic and aperiodic components. According to
(3), it is necessary to use both amplitude and phase, at
each frequency, for separating these components in the
frequency domain. Obviously, the magnitude and phase
are not directly available. We developed an iterative
procedure to reconstruct the aperiodic components.

From the frequency distribution of the harmonic re-
gions in the log magnitude spectrum, we hypothesize,
to a first approximation, that the valley regions between
two harmonics are mostly due to the aperiodic compo-
nent. To obtain an approximate aperiodic component,

of the residual, we can sum only those DFT
coefficients for which the noise component
dominate. That is

(5)

where is equal to the size of the DFT. Here, is
the set of frequency points in the valley regions between
two harmonics. The width of the harmonics can be fixed
according to the width of the main lobe in the cepstrum.

Thus, the aperiodic component is set to zero in the
harmonic regions, and to the measured DFT values in
the regions between the harmonics, i.e., in the noise
regions. It is clear that such a comb-filtered noise
component cannot represent the aperiodic component in
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Fig. 2. PAP decomposition algorithm. SAC: synthetic aperiodic component. SPC: synthetic periodic component. EAC: extracted aperiodic component.
EPC: extracted periodic component.

the speech signal. It is necessary to estimate the values
of the noise component in the harmonic regions. The
contribution of the aperiodic component in the harmonic
regions is estimated using an iterative algorithm similar
to the Papoulis–Gerchberg extrapolation algorithm [24,
pp. 244–248]. An estimate of the aperiodic component
is obtained by iteratively moving from the frequency
domain to the time domain and vice versa, through the
inverse DFT (IDFT) and DFT operations.

a) First iteration: Suppose we obtained a set of DFT
coefficients that form a first approximation to the
aperiodic component

for (noise regions)
otherwise.

(6)

An IDFT is applied to this first approximation, and
the corresponding time-domain signal is obtained
(512 samples in our case). A finite duration constraint
is imposed in the time domain, i.e., the signal samples
of the aperiodic component in the time domain beyond
the analysis frame size are set to zero (as we used a

samples analysis windows, the samples
from 255 to 511 are set to zero, numbering the samples

from 0 to 511). That is, form a signal

for
otherwise.

(7)

b) th iteration: Starting with we compute
the DFT of and form the function

for
otherwise

(8)

and compute its IDFT The time samples beyond
are set to zero. That is

for
otherwise.

(9)

The iterative algorithm is continued until the difference
(in terms of magnitude of the noise samples) between
two successive steps becomes less than a given threshold
value, or after a fixed number of iterations. In our
experiments, we used iterations. The periodic
component is obtained by subtracting the reconstructed
aperiodic component noise samples from the residual
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signal samples in the time domain. The steps in the iter-
ative algorithm are illustrated in Fig. 2. The convergence
of the proposed algorithm is proved in [14].

4) Synthesis: The aperiodic component of the residual sig-
nal is obtained for each of the overlapping analysis
frames. The aperiodic component signal for the entire
utterance is derived from these short-time signals, using
an overlapp-add procedure as follows:

(10)

where is the number of frame in the utterance.
The periodic component is then obtained by subtrac-

tion of the aperiodic component, as follows:

(11)

Finally, the speech signal corresponding to each com-
ponent is generated by passing the component residual
signal through the time varying all-pole synthesis filter.

The algorithm depends on an initial analysis window. Of
course, the sidelobes and the main lobe width of the win-
dow will influence the regions between the harmonics in the
spectrum, and introduce some computational noise. Figures
of merit for different window types are available, but it is
difficult to theoretically study the effect of the window on
the PAP decomposition. For this reason, we designed a set
of experiments using synthetic speech. The measurements
reported later in this paper give some data on the level of
the computational noise introduced by the window. We tried
several window types and retained the Hamming window in
the light of some preliminary experiments.

In our experiments, we use linear predictive coefficient
(LPC) analysis and synthesis because it seemed more relevant
to work on an approximation of the source signal. Direct
decomposition using the signal rather than the LP residual
was also tried. The results show that the decomposition is
still good, but a slight loss in accuracy is noticeable. Thus,
LPC analysis and synthesis is preferred for evaluation of
the algorithm. Also, we fix the same algorithm parameters
for all the test signals because we want comparable analysis
conditions for all the test signals. In other applications, the
algorithm could be used with or without LPC decomposition.
Also, it would be better to adapt the analysis parameters
(window size, DFT size, frame rate, etc.) to the specific
features of the signals processed.

C. Measurement Methodology

In this section, we discuss the measures used in our study
to assess the performance of the proposed PAP decomposition
algorithm.

As the source/filter decomposition achieved by the LP
analysis is not perfect, the measurements are performed on
the resynthesized periodic and aperiodic components rather
than on the approximation of the excitation source signals.
Therefore, the formant structure of the signals is added before
the measures are taken. Although the formant structure may
play a role in the measures, particularly when harmonics move
over the formant structure, the influence of spectral peaks and

spectral peaks changes is beyond the scope of this study. Three
different measures are used to study various aspects of the
voice source characteristics. They are: periodic-to-aperiodic
ratio, perceptual spectral distance, and spectrograms.

1) Periodic-to-Aperiodic Ratio:A direct measure of the
aperiodic component is the HNR, defined (in decibels) by

(12)

where is the energy in the periodic component and
is the energy in the aperiodic component. The energy can
be computed both in the time and frequency domains. In
either case, the total energy is defined as the sum of the
squared amplitudes for all samples. Unfortunately, the periodic
and the aperiodic components are not available separately in
actual speech. Therefore, to study the performance of the PAP
decomposition algorithm, the HNR is computed for synthetic
test signals.

HNR’s are computed using the periodic and the aperiodic
components, before and after decomposition (i.e., using SAC,
SPC, EAC, and EPC). The HNR’s computed from SAC
and SPC correspond to the input HNR (or, simply termed
HNR). The HNR computed using EAC and EPC, i.e., after
decomposition, can be called theperiodic-to-aperiodic ratio
(PAPR). As mentioned before, HNR is actually a measure of
the ratio of the energies in the filtered additive noise (SAC)
and in the filtered glottal waveform (SPC). Glottal waveforms
(SPC) may contain some modulation aperiodicity. This is
in contrast with the PAPR, which is the ratio between the
aperiodic and periodic components after decomposition. The
aperiodic component (EAC) may contain some modulation
aperiodicity, although there is no energy in the SAC. In the
present case, the HNR and PAPR for synthetic test signals are
computed in the time domain as follows:

HNR

SPC

SAC

(13)

PAPR

EPC

EAC

(14)

where is the number of samples in the utterance.
A drawback of the PAPR measure is that the energy due to

modulation aperiodicity (jitter and shimmer) is partly merged
with the energy of the periodic component and partly with
the energy of the aperiodic component. This is because this
type of perturbation depends on the way the harmonic signals
are generated. One must take the sources of aperiodicity into
account when interpreting the results of the decomposition.
For natural speech signals, only the PAPR is available. One
of the aims of this study is to discuss whether the measured
PAPR can be used as an estimate of the actual input HNR for
natural speech.
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2) Perceptual Spectral Distance:Although comparison of
HNR and PAPR may give some indication of the ratio of the
periodic and aperiodic components, they do not give an idea
of similarity of the generated and extracted signals. Hence, a
perceptual spectral distance is used for comparing SPC and
EPC. The perceptual distance is a measure of the similarity
between the amplitude spectra of the SPC and the EPC, seen
on a perceptual frequency scale. This distance is applied to
the periodic components only. The SAC is reduced to zero
in all the test signals in the “jitter,” “shimmer,” and “F0
variation” sets of Table I. Therefore, the distance between
the SAC and the EAC for these tests signals is not very
informative. Contrary to the SAC, all the SPC’s have the same
amplitude, therefore it is meaningful to compare the distances
measured for the different test signals. This is why the distance
is applied to the periodic components only. A drawback is that
the distance will give only a little insight for comparing the
SAC and the EAC.

The perceptual spectral distance is based on critical bands,
approximating the frequency selectivity of the ear. The critical
band rate is expressed in Barks [25]. For computing the
perceptual spectral distance, a total number of 29 1-Bark
bandwith bandpass filters are used. The spacing between filters
is 0.5 Bark to cover the 15.5 Bark that correspond to the 0-4
kHz frequency range. The filters are implemented in the DFT
domain using triangular-shaped spectral windows. Each filter
gain is normalized with respect to the first filter, centered at
0.5 Bark. For each analysis frame, the energy in each band of
the band-filtered spectrum is computed as follows:

(15)

where is the energy inth band, is the bandwidth of
the filter expressed in number of DFT coefficients (assuming
that is even), is the power gain of theth filter
(varying triangularly with is the power spectrum,
and is the center frequency of theth band expressed in
number of DFT coefficients.

The perceptual spectral distance between frames of two
signals, is defined as the sum of the energy differences in
different bands, as follows:

(16)

where is the total number of filters, and and are
the energies in theth band of the first and the second signal,
respectively. The perceptual spectral distance is given by the
average of the distances for individual frames, and expressed
in dB.

It must be noted that the perceptual distance takes all the
details of the power spectra into account. This may not be
the way human subjects perceive signals, since it is generally
acknowledged that more attention is paid to the spectral peaks
than to the spectral valleys. Therefore, it is difficult to interpret
the distance in terms of audibility of the differences between
the SPC and the EPC. Also a drawback of the spectral distance

Fig. 3. Effect of input HNR and burst duration on PAPR.

measure is that it can be applied to synthetic signals only,
where the input periodic component is known.

3) Spectrographic Observation:PAPR and spectral dis-
tance give some idea on the accuracy of the decomposition.
But with synthetic signals, it is possible to examine the
time-frequency characteristics of the signals before and after
decomposition using wideband spectrograms. The resemblance
of SPC and EPC or SAC and EAC can be checked using
spectrograms. Spectrograms can be used for natural speech
as well, But only a qualitative assessment of differences in
signals can be made.

III. A NALYSIS OF RESULTS FORVARIOUS VOICE SOURCES

A. Effect of Additive Random Noise

The effects of HNR, duration of the noise burst, and
fundamental frequency on the measured PAPR are shown in
Fig. 3. Each line represents one HNR condition for a particular
noise burst duration. The-axis represents F0, and the-axis
represents the measured PAPR obtained after decomposition.
It can be seen that the PAPR gives an idea to the input HNR.
On average, the PAPR obtained for the 5 dB HNR condition
is 10 dB, the PAPR obtained for the 10 dB HNR condition is
14 dB, the PAPR obtained for the 20 dB HNR condition is 23
dB, and the PAPR obtained for the dB HNR condition is 47
dB. Thus, the PAPR’s are higher than the input HNR’s. The
difference between HNR’s and PAPR’s seems almost constant
for each HNR condition. The noise level is underestimated,
which means that there is less energy in the EAC compared
to the SAC, except for the no noise condition.

The PAPR is almost constant for all the F0 frequency
conditions between 80 and 300 Hz. However, this is not
true for the no-noise condition, where an influence of F0 is
noticeable. When there is no noise in the SAC, the energy
in the EAC is due only to computational noise, which seems
sensitive to the F0. This could be explained by the effect of the
fixed-size windows used in the algorithm, since the number of
signal periods seen in the analysis window depends on F0. We
also notice that the duration of the noise burst does not have
any significant effect on the measured PAPR.

The algorithm performs well in separating the additive noise
and the periodic component. The HNR condition gives
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Fig. 4. Effect of input HNR and burst duration on perceptual spectral
distance.

an idea of the accuracy of the algorithm. This limiting situation
shows the effects of computational noise. When there is no
input noise (input the separation algorithm gives
rise to an aperiodic component which is about 42–58 dB lower
than the periodic component.

Quantitative measurements using the spectral distance are
shown in Fig. 4. Each line represents one HNR condition
for a particular noise burst duration. The-axis represents
the computed distance in dB between the SPC and the EPC.
There are no significant differences between the continuous
noise and burst noise conditions. The lines for different HNR
conditions appear in the opposite order, compared to the PAPR
measurements Fig. 3. The distance is small when there is no
noise in the original signal, and it increases with decrease in the
HNR. This means that the algorithm produces more difference
between the original and the extracted periodic components
for lower HNR.

Another noticeable effect is that the distance increases with
increasing F0. This may be due to the fact that fewer samples
are available for specifying the pitch periods for high pitched
signals. Therefore, EPC modeling is less accurate for high-
pitched signals. The average minimum distance is less than
0.4 dB. The maximum distance is less than 3.5 dB for lower
HNR and higher pitch.

Wideband spectrograms for the two noise burst duration
conditions are shown in Fig. 5. This figure compares the
SAC and the EAC for continuous and pulsed additive noises.
Ideally, if the decomposition method were perfect, the two
signals in the first and second pairs of signals should be
identical. In fact, they appear rather close. The time structure
of noise is fairly well captured in the extracted noise signal.
Fig. 6 shows the input pulsed noise in the SAC and the EAC.
The main time-domain features of the signals are similar. The
EAC signal amplitude is lower than the SAC signal amplitude,
and some noise is still present in the EPC. This reflects the
fact that the additive noise is underestimated in the EAC.

B. Effect of Jitter

Modulation aperiodicities are caused by jitter, shimmer, and
F0 variations. In this section, we consider the effect of jitter

Fig. 5. Spectrograms for the two noise burst duration conditions (serial
formant synthesizer). Burst duration: 100 and 60% of T0, F0= 80 Hz, Input
HNR = 5 dB.

Fig. 6. Comparison of (from top to bottom) SPC, EPC, SAC, and EAC. F0
= 80 Hz, HNR= 5 dB, noise burst duration= 60% of T0. These signals
correspond to those in Fig. 1.

on the decomposition algorithm. The effects of the modulation
aperiodicities were studied for signals containing no additive
noise, and for different fundamental frequency conditions.

PAPR measurements are shown in Fig. 7 for different jitter
and fundamental frequency values. Each line of Fig. 7 corre-
sponds to a different jitter value. It must be emphasized here
that the test signals were generated using a different speech
synthesizer than in the additive noise case. This explains why
the 0% jitter condition of Fig. 7 is not exactly same as the HNR

condition in Fig. 3, although the experimental conditions
are otherwise identical.
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Fig. 7. Effect of jitter on PAPR.

It appears that jitter affects the measured PAPR significantly.
This is noticeable even for the lower jitter conditions. For
the higher jitter condition (5%), the amount of aperiodicity
introduced by the jitter seems comparable to the amount of
aperiodicity observed in the test signal containing 10 dB HNR
additive noise. However, this is just an indication, because
the synthesizers used in both experiments are different. Jitter
appears a very significant source of aperiodicity in the signal.
Moreover, it seems impossible to distinguish between this
source of aperiodicity and additive noise using only the PAPR
measure.

It is generally known that the effect of jitter on the spectra
of voiced speech is to widen the harmonic peaks [8], [20].
This can be explained by the fact that jitter is a random
variation of the fundamental frequency, and therefore is a
perturbation bounded mostly to the harmonic frequencies.
As short-term spectrum computation always introduces some
smoothing effect, jitter results in broadening the harmonic
peaks. Broad harmonic peaks reduce the accuracy of the
algorithm, because the number of initial data points available
for extrapolation is reduced. Generally, high-pitched signals
produce higher PAPR than low-pitched signals.

The effect of jitter on the spectral distance is shown in
Fig. 8. The spectral distance is not very much affected by low
jitter conditions. High jitter conditions result in large spectral
distances between SPC and EPC. This is particularly true for
high-pitched signals. The spectral distances measured for the
higher jitter condition are less than to those obtained for the
lower HNR additive noise condition in Fig. 4. A high distance
could indicate additive random noise rather than modulation
aperiodicities. However, it appears difficult to discriminate
additive noise and jitter, based on the spectral distance alone.

Spectrograms of EPC and EAC for two jitter conditions are
displayed in Fig. 9. In case of little jitter (0.25% jitter), the
EAC reduces to zero. That means there is almost no energy
in this component. In case of high jitter (5% jitter), the EAC
is actually significant. That is, a part of the signal energy is
transferred to the aperiodic component. In this case, the EAC
might be useful for measuring the jitter effect in a signal.

In summary, high jitter values ( 1%) result in high values
for spectral distance and low values for PAPR. This is not

Fig. 8. Effect of jitter on perceptual spectral distance.

Fig. 9. Spectrograms for two jitter conditions (parallel formant synthesizer).
Jitter: 0.25 and 5.0%, F0= 80 Hz.

usually the case in normal voices, where jitter is generally
less than 1%. In this case, the small modulation aperiodicity
introduced by low values of jitter is associated with the
periodic component. When the jitter increases, the effect of the
random F0 variation is reflected in the aperiodic component.
In order to show this effect, high jitter values are considered
in our experiments, although such values are not common in
normal speech. Therefore, for high jitter values, the aperiodic
component contains noise coming from both the additive noise
as well as from the random variation of the periodicity. If
one is looking for a global measure of aperiodicity, which
encompasses all sources of noise, the decomposition algorithm
is useful. But the algorithm does not give an idea of the
different components of aperiodicity.

C. Effect of Shimmer

Another source of aperiodicity in natural speech signals
is shimmer. Shimmer is a random perturbation of the peak
amplitude in successive pitch periods. The effect of shimmer
on the PAPR is shown in Fig. 10. Each line in this figure rep-
resents one shimmer condition. High shimmer values reduce
the PAPR. But even for a high shimmer value (1.5 dB), the
effect on PAPR appears limited to about 20 dB. Therefore,
the effect of shimmer appears less important than the effect
of jitter. It has already been noticed [15] that shimmer has
less effect than jitter on the spectrum and on the perceived
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Fig. 10. Effect of shimmer on the PAPR.

Fig. 11. Effect of shimmer on perceptual spectral distance.

aperiodicity. Thus, we can assume that the shimmer values
encountered in normal speech have little effect on the PAPR.
This can be explained by the fact that, unlike the effect of
jitter, shimmer does not change the locations of the harmonic
peaks. It changes rather the amplitudes of the harmonic peaks.
The decomposition algorithm relies heavily on the locations
of the harmonic peaks.

The effect of shimmer on the spectral distance is shown
in Fig. 11. The spectral distance increases with the pitch of
the signals. High shimmer values also increase the spectral
distance. As in the case of jitter, the spectral distances for high-
pitched signals are more informative. The variation in spectral
distance is more important at higher F0 than at low F0. This
is probably because of the larger spacing between harmonics.
The effects of shimmer are comparable to the effects of jitter,
as far as the spectral distance is concerned.

Spectrograms of signals containing shimmer are displayed
in Fig. 12. The first pair corresponds to EPC and EAC for
the 0.5 dB shimmer condition. The second pair corresponds
to EPC and EAC for the 1.5 dB condition. For the first pair,
little energy is present in the EAC. For the second pair, a small
EAC is visible, showing that the effect of shimmer is not very
significant.

In summary, shimmer affects both the PAPR and the spec-
tral distance, but only for high values. For shimmer values

Fig. 12. Spectrograms measured for two shimmer conditions (serial formant
synthesizer). Shimmer: 0.5 and 1.5 dB, F0= 80 Hz.

encountered in normal voices, the EAC is very low compared
to the EPC. For high shimmer values, it affects the EAC.

D. Effect of Fundamental Frequency

The effect of F0 can be decomposed into two categories:
the effect of the pitch range and the effect of pitch variation.
The decomposition algorithm makes use of a fixed analysis
window. Therefore, the number of pitch periods in one analysis
frame depends on the fundamental frequency. If the pitch range
of the specific signals under study is known in advance, it may
be possible to adapt the analysis parameters. The issues related
to the pitch range have already been examined in the previous
sections. It appears that the pitch range has little influence on
the PAPR, but more effect on the spectral distance.

The effect of F0 is related to pitch variations. Random
variations (jitter) have already been studied. Prosodic vari-
ations (intonation) are also responsible for some modulation
aperiodicity. The test signals used in this experiment are linear
pitch glides. The linear changes are of the same order of
magnitude as the pitch glides encountered in normal speech
(approximately 0–24 ST/s). In this study, the test signals
contain no other form of modulation aperiodicity, no jitter
and shimmer, and also no additive noise. The beginning of
the pitch glides is located either at 100 Hz or at 200 Hz,
corresponding roughly to male and female average pitches,
respectively. Therefore, a 12 ST/s glide is either between 100
and 200 Hz, or 200 and 400 Hz, for a tone lasting one second.
It must be pointed out that although the extents are expressed
in ST/s, linear pitch glides were used.

Fig. 13 shows the PAPR values for F0 glides. Each line
represents a particular F0 condition (100 Hz or 200 Hz) for
the beginning of the glide. The-axis represents the rate of
F0 change in ST/s. The-axis represents the measured PAPR.
For low pitch glide conditions, the effect of pitch change is
not very significant. For very rapid pitch changes, PAPR is
rather low. Intonation changes introduce only some variation
in the duration of the fundamental period. Jitter introduces the
same type of effect, but randomly. A jitter of NJ% means that
the maximum possible change in F0 from one period to the
following is NJ% of F0. As for intonation variation, if M ST/s
is the rate of F0 change, then the percentage NI of F0 change
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Fig. 13. Effect of F0 changes on PAPR.

Fig. 14. Effect of F0 changes on perceptual spectral distance.

for one fundamental period T0 is

(17)

Then, theoretically, a 24 ST/s f0 variation correspond to
1.4% at 100 Hz, and 0.7% at 200 Hz. The

corresponding PAPR are close to 14 dB (100 Hz) and, 23
dB (200 Hz) in Fig. 13. The nearest values found in Fig. 7
are obtained for 1.5% at 100 Hz dB), and
for 1% at 200 Hz dB). The values obtained
are relatively close to the values predicted theoretically. Since
large intonation variations correspond to large perturbations
of the signal periodicity, it is not surprising that the aperiodic
component becomes large in these cases. The PAPR is lower
for the lower pitch frequency (100 Hz).

The effect of intonation variation on the spectral distance is
displayed in Fig. 14. Large pitch glides increase the distance
between EPC and SPC. The distances measured are generally
quite low, especially compared to the distances obtained for
additive random noise.

There is a 20–25 dB difference in PAPR between 0 and 12
ST/s conditions. Therefore, the results obtained for fixed pitch
signals are probably too optimistic for real speech, particularly
in the case of large F0 variations due to intonation changes. As
for jitter and shimmer, the modulation aperiodicity introduced
by pitch changes affects the aperiodic component. This is

Fig. 15. Spectrograms measured for two F0 changes conditions (parallel
formant synthesizer). F0 changes: 1.5 and 24 ST/s, F0= 100 Hz.

Fig. 16. Spectrograms measured for two F0 changes conditions (parallel
formant synthesizer). F0 changes: 1.5 and 24 ST/s, F0= 200 Hz.

clearly seen in the spectrogram plots in Figs. 15 and 16.
Fig. 15 is for the 100 Hz base frequency, and Fig. 16 is for the
200 Hz base frequency. In both figures, the first pair of signals
represent the EPC and the EAC for the 1.5 ST/s condition,
and the second pair of signals represent the EPC and the
EAC for the 24 ST/s condition. When there are few pitch
changes, the energy in the EAC is negligible. But for large
pitch variations the EAC becomes significant. It seems that
pitch changes introduce high-frequency energy in the EAC.
However, there is less energy in the EAC for the 200 Hz
condition, compared to the 100 Hz condition.

IV. SUMMARY AND CONCLUSION

In this paper, we addressed the issue of the significance
of a recently proposed PAP decomposition method for speech
signals. The method is based on processing of the LP residual
in the spectral domain. An iterative procedure is used for
reconstruction of the aperiodic component.

Synthetic voiced speech signals are preferred for assess-
ment, because they allowed easy control of the voice charac-
teristics of the speech signal. Synthetic signals are generated
using formant synthesis. The parameters under study repre-
sent different sources of aperiodicity encountered in speech
production: additive random noise, jitter, shimmer, and pitch
changes due to intonation. Three types of measurements are
performed for each condition: periodic to aperiodic ratio
(PAPR), perceptual spectral distance, and spectrograms.
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The PAP decomposition algorithm is able to separate the
additive random noise and the periodic component for a wide
range of F0 variations. The PAPR is able to give some
indication of the input HNR. Therefore, in natural speech
also one may use the PAPR as an estimate of the input
HNR, especially when jitter and shimmer are low. But for
large jitter or shimmer values, the additive random noise and
modulation noise are merged in the aperiodic component.
While it is still possible to separate the periodic and aperiodic
components, it is difficult to separate the different sources
of aperiodicity in the aperiodic component. Thus, PAPR may
be useful in the analysis of global voice quality, although it
cannot be directly interpreted in terms of the underlying speech
production parameters, like jitter, shimmer, or pitch changes
in the excitation signal or aspiration noise in the voice source,
when several different sources of aperiodicity are present in
the signal.

The spectral distances are generally low, and reflected the
amount of aperiodicity in the signal. The spectral distances are
systematically higher for additive random noise than for mod-
ulation aperiodicities. This is a possible cue for discrimination
between additive random noise and modulation aperiodicities.

The energy level and the time-frequency content of the EAC
and the EPC are analyzed with the help of spectrograms. In
the case of additive random noise, the spectrograms of the
EAC are very close to those of the SAC. The EAC is a
random noise showing the same type of modulation than the
SAC. In the case of modulation aperiodicities, there is some
periodic modulation in the spectrogram of the EAC. In this
case, no random noise is present in the SAC, all the modulation
aperiodicities are included in the SPC. Therefore, the EAC
results only of leakages from the SPC. The amount of leakage
in the spectrogram of the EAC is an indication of the amount
of modulation aperiodicity in the SPC.

The present studies demonstrate that for normal speech,
where modulation aperiodicities are low, the PAP decompo-
sition algorithm can reliably separate additive random noise
in the voice source and glottal periodic pulses. Thus, the
algorithm can be used for studying the voice characteristics
that are linked to aspiration and frication noise in the voice
source. As a matter of fact, the output of the decomposition
algorithm was successfully used for modification of voice
source characteristics in speech synthesis experiments [26].
The algorithm can also be used in other applications such as
voice pathology and speech acoustics studies.
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