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Abstract—The speech signal may be considered as the output
of a time-varying vocal tract system excited with quasiperiodic
and/or random sequences of pulses. The quasiperiodic part may
be considered as the deterministic or periodic component and
the random part as the stochastic or aperiodic component of the
excitation. In this paper, we discuss issues involved in identifying
and separating the periodic and aperiodic components of the
source. The decomposition is performed on an approximation to
the excitation signal, instead of decomposing the speech signal
directly. The linear prediction residual signal is used as an
approximation to the excitation signal of the vocal tract system.
Speech is first analyzed to determine the voiced and unvoiced
parts of the signal. Decomposition of the voiced part into periodic
and aperiodic components is then accomplished by first identify-
ing the frequency regions of harmonic and noise components in
the spectral domain. The signal corresponding to the noise regions
is used as a first approximation to the aperiodic component. An
iterative algorithm is proposed which reconstructs the aperiodic
component in the harmonic regions. The periodic component is
obtained by subtracting the reconstructed aperiodic component
signal from the residual signal. The individual components of the
residual are then used to excite the derived all-pole model of
the vocal tract system to obtain the corresponding components
of the speech signal. Experiments were conducted using synthetic
speech. They demonstrated the ability of the algorithm for decom-
position of a synthetic speech signal made of a mixture of periodic
and aperiodic components. Application to natural speech is also
discussed.

Index Terms—Periodic and aperiodic decomposition, spectral
extrapolation, spectral modeling, speech analysis/synthesis, voice
source analysis.

I. INTRODUCTION

A CCORDING to linear acoustic theory, the speech pro-
duction process can be viewed as consisting of a source

component and a filter (or system) component [1]. One of
the objectives in speech analysis is to study the characteristics
of the source and system by processing the speech signal.
Normally, the source is modeled as either voiced or unvoiced,
and the voice source as quasiperiodic sequences of glottal
pulses. But in real speech even the voiced part consists
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of some random component [2], [3]. This is particularly
obvious in voiced fricative (e.g., /v/, /z/), in breathy vowels
(e.g., high vowels in unvoiced consonantal contexts), or in
speech produced with a weak phonatory effort. The random
component is also present in normal vowels due to turbulence
of air around the instant of glottal closure, which gives rise to
aspiration noise [4], [5].

In this paper, the harmonic (or deterministic) component
is termed as the periodic component and the random (or
stochastic) component as the aperiodic component. The study
of the aperiodic component of excitation is important in speech
analysis. The aperiodic component may help in characterizing
voice quality attributes such as breathiness or roughness.
Breathinessis associated to the impression of glottal air
leakage and to turbulence noise during phonation.Roughness
is defined by the presence of a low-frequency noise component
[6]. Moreover, including the aperiodic component in voiced
excitation may help to produce a natural sounding synthetic
speech [7]. Detailed characterization of the source may also
help in generating synthetic speech with desired voice charac-
teristics [8]. Several methods have been proposed to separate
a speech signal into periodic and aperiodic components: they
are based on sinusoidal modeling, on harmonic plus noise
modeling, or on the multiband excitation vocoder.

Serra and Smith [9] proposed a method for analysis and
synthesis of musical sounds in terms of a deterministic and
a stochastic component. The method is based on sinusoidal
modeling, initialy presented by McAulay and Quatieri [10],
[11], and further refined by George and Smith [12] . All the
energy present at harmonic frequencies is associated to the de-
terministic component. This is not actually the case in speech,
where broadband noise is spread out over the whole spectrum.
Thus, the stochastic component cannot entirely be attributed to
the random part of the source. Continuity of the frequencies of
the sinusoids are avoided in the proposal based on harmonic
noise model [13], where a pitch synchronous analysis is made
for the harmonic decomposition. Typically, speech is lowpass
filtered, and a fixed number of sinusoids are fitted to the
lowpass component. The highpass (above 3–4 kHz) component
only is associated with the noise component. Thus, the noise
component cannot represent accurately the random part of
the source. This model is merely a representation of speech
signal suitable for speech synthesis by concatenation, but it can
hardly be used for measurement of the aperiodic component
in speech. In the multiband excitation vocoder [14], an initial
source/filter decomposition is performed. The excitation part is
then processed using the short-time Fourier transform (STFT).
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For each frame of the residual, the frequency domain is
segmented into voiced and unvoiced regions. These regions
are defined using a decision criterion for each category. This
method has been applied to speech synthesis by concatenation
[15] and to musical sounds [16]. Again, this method takes
a binary decision on the frequency regions that are either
noisy or voiced. this assumption does not reflect the speech
production mechanism, where broadband noise is mixed with
quasiperiodic voiced excitation.

None of the above methods seems able to extract the degree
of aperiodicity (i.e., proportion of the periodic and aperiodic
components of excitation ) in a given segment, because they
make a binary decision at each frequency sample. But in actual
speech, it is likely that a frequency sample may consist of both
the periodic and the aperiodic components simultaneously.
Therefore, a decomposition method should be able to separate
the relative proportion of these components at each frequency
sample. This can be done by processing both components in
the complex frequency domain, rather than taking decision on
magnitude spectra only.

In this paper, the periodic component is associated with the
periodic part of the excitation, and the aperiodic component
with the random part of the excitation. A key point of the
work is the introduction of an iterative algorithm for estimating
the aperiodic component of the excitation [17] . The idea is
to derive a first approximation of the periodic and aperiodic
components using a harmonicity criterion. Each frequency
sample for each frame is associated to one or the other of the
components. But this approximation must be refined, because
both components are physically present at each frequency
sample. The iterative algorithm, based on discrete Fourier
transform (DFT)/inverse discrete Fourier transform (IDFT)
pairs, is used for reconstruction in the complex domain of
the aperiodic component in the region labeled as periodic at
the first stage of processing. Finally, the periodic component
of the excitation is obtained by subtracting the estimated
aperiodic component from the excitation signal, and synthesis
is performed using a simple overlap-add scheme. Contrary to
other methods, no binary decision is taken in the spectral
domain, but complex spectra of the periodic and aperiodic
components are computed for the full band and for each frame.

In Section II, the model that forms the basis for the method
proposed in this paper is described. The actual method for
decomposition of the excitation signal into the two components
is described in Section III. Some assessment using synthetic
speech and illustrations are given in Section IV to demonstrate
the utility of the proposed method. Conclusions are given in
Section V.

II. BASIS FOR THEPROPOSEDDECOMPOSITIONMETHOD

A. Speech Model

We assume the following model for speech production:

where is the speech signal, is the impulse response of
the vocal tract system, is the excitation signal, is the
quasiperiodic part of the excitation, and is the aperiodic
part of the excitation.

In the spectral domain we can write

(2)

where and are the Fourier transforms
of and respectively.

If the periodic and aperiodic parts of the excitation are
uncorrelated, then

(3)

Depending on the proportion of the periodic and the aperi-
odic components at each frequency the different components of
the excitation source get prominence. The method for deriving
the components of the source signal contains the following
steps of processing.

• Linear prediction (LP) residual: The speech signal is
separated into an approximate excitation and filter com-
ponents using LP analysis. The LP residual signal is
then decomposed into short (10–20 ms) segments of
overlapping signals.

• Periodic and aperiodic regions: For each of the over-
lapping segments of the excitation signal, the frequency
bands of the periodic and aperiodic regions are deter-
mined using the DFT and the cepstrum of the signal in
the analysis segment.

• Decomposition: For each segment, the aperiodic compo-
nent is reconstructed using the iterative algorithm de-
scribed in Section III. The aperiodic component of the
plain excitation signal is obtained by adding in the time
domain the components for each of the overlapping
segments. Subtracting this aperiodic component from the
LP residual signal gives the periodic component of the
excitation.

• Synthesis: The aperiodic and periodic components are
used separately to excite the time varying all-pole filter
to obtain the corresponding components of the speech
signal.

Fig. 1 gives a schematic diagram of the proposed algorithm.
In the following we will discuss details of the above steps.

B. Linear Prediction Residual

The objective is to separate the speech signal into compo-
nents corresponding to the periodic and aperiodic components
of the excitation source. Most of the available methods for
decomposition attempt to process the speech signal directly.
But windowing the speech signal produces undesirable fea-
tures in the analysis due to truncation effects, because we are
truncating a signal consisting of highly correlated samples.
The effects of truncation can be reduced significantly, if
the decomposition is attempted on the residual excitation
obtained by removing the correlated part from the speech
signal [18]. This is because the excitation signal samples are
nearly uncorrelated. Therefore, in this paper we propose to
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Fig. 1. Schematic diagram of the periodic–aperiodic decomposition algo-
rithm.

decompose the signal corresponding to the excitation signal
first. Then the components of the excitation signal are used to
generate the corresponding components of the speech signal.

Note that even an approximation to the residual signal
will significantly improve the effectiveness of the resulting
decomposition. LP analysis is performed on each of the
overlapping segments of speech data. The output of this
analysis is a set of LP coefficients for each segment. The
residual signal is obtained by passing the speech signal through
the inverse filter defined by these linear predictive coefficients
(LPC’s).

These overlapping frames of the LP residual signal are
considered for further analysis. For each of these frames, the
data is multiplied with a data window (the Hamming window
was preferred [19]), and a DFT is computed. The size of the
DFT was chosen to be twice the size of the data in the analysis
frame. Each DFT coefficient is in general contributed to by
both the periodic part and the aperiodic part. It is necessary to
determine the relative strengths of the periodic and aperiodic
parts of the residual signal. If a DFT coefficient corresponds
mostly to the aperiodic part, there is no point in considering
that coefficient in the summation to obtain an initial estimate of
the periodic component. Therefore, to obtain an approximate
periodic component, of the residual, sum only those

Fig. 2. Log magnitude spectrum of a frame of the harmonic part of the
excitation signal for a vowel, derived from liftered spectrum. Frequency dots
corresponding to positive values are associated to the harmonic regions, and
frequency dots corresponding to negative values are associated to the noise
regions.

DFT coefficients for which That is

(4)

(5)

where is equal to the size of the DFT and
Here, is the set of frequency points at which

If we can derive the values of either the periodic part
or the aperiodic part then the other part can be obtained
by merely subtracting the known part from the overall residual
signal. But in general it is not easy to determine either of
these individual components because they are combined by
a complex addition in the residual signal. However, it seems
possible to determine the ratio of and In such a
case, we may consider those values offor which the periodic
part is higher than the random part, and use those frequency
samples in the summation to estimate the periodic part.

C. Identification of Noise and Harmonic
Regions Using Cepstrum

In our approach, we propose to decompose the frequency
domain initially into two regions, one belonging predominantly
to the periodic part and the other to the random part of the
spectrum. We use a straightforward harmonic-based selection
for this purpose, in which the knowledge of the pitch period is
used to mark the harmonic and noise regions in the spectrum
as shown in Fig. 2.

In the figure, the sinusoidal log spectrum is due to the peak
in the cepstrum at the pitch period. The frequency intervals
corresponding to the positive values of the log spectrum are
identified as the harmonic regions and the frequency intervals
with negative values of the log spectrum are identified as the
noise regions.

The idea of using cepstrum to derive a comb filter in the
spectral domain for computing the harmonic to noise signal
energy ratio was proposed in [6]. Here, we use the cepstrum
analysis to discuss the manner in which the periodic
and aperiodic components are combined, and to derive
the ratio of the two spectral components as a function of
frequency. Note that we can only obtain the relative values
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Fig. 3. Real cepstrum of a segment of the LP residual signal for voiced
speech. Three marked regions are corresponding to: (a) vocal-tract system,
(b) harmonic part of excitation, and (c) noise part of excitation.

of these components due to the log operation involved in the
cepstral analysis.

Let us consider the speech production model given in (3)
again. If we consider the log magnitude spectrum, we get

(6)

The IDFT of this log magnitude spectrum gives the real
cepstrum in the quefrency domain. That is

(7)

Fig. 3 shows the real cepstrum for a segment of voiced
speech. The frequency domain of the cepstrum can be split
approximately into three distinct regions. The low quefrency
region (marked A in Fig. 3) in the range 0–0.002 s is mainly
due to the vocal tract system characteristics. The rest of the
quefrency region can be attributed to the excitation part. In
the region corresponding to the excitation, the portion marked
B in Fig. 3, i.e., 0.01 s around the cepstral peak at the pitch
period, can be attributed to the harmonic or periodic part. The
remaining excitation portion of the quefrency region can be
attributed to the noise or random part. Note that the region
identified as random may contain cepstral peaks around twice
and thrice the pitch periods. But the energy contribution due
to these peaks can be assumed to be insignificant compared to
the energy contribution due to the region around the cepstral
peak at the pitch period. The choices for the widths for the
three parts in the quefrency domain are only approximate. The
reason for the choice of a region around the pitch region is due
to broadening of the cepstral peak when two successive periods
of the residual signal are not exactly equal. The broadening
also takes place due to windowing of the analysis frame of
the residual signal.

The main objective of this cepstral analysis is to show
that one can derive an approximation to the harmonic-to-
noise ratio (HNR) at each frequency sample. Assuming that
the energy due to the region around the pitch peak in the
cepstrum corresponds to the harmonic part and the rest of the
energy corresponds to the noise part, the ratio of the energies
of the respective components is derived as HNR. The ratio
of the harmonic and random parts of the spectrum can be
obtained at each frequency point by computing the IDFT of the
corresponding liftered components (see Fig. 4). From the ratio,
it should be possible to retain only those frequency samples
which have a higher periodic component over the aperiodic

Fig. 4. Log magnitude spectra of a frame of the harmonic and noise parts
of the LP residual signal for a vowel, derived from liftered cepstrum.

component in order to derive an approximation to the periodic
component.

As mentioned earlier, we have adopted a simple harmonic-
based selection in our studies. Since it may be difficult to
identify the location of the cepstral peak at the pitch period
exactly due to the broadening effect or due to noise, this
location can be determined by a separate analysis of the speech
signal for pitch extraction. The analysis automatically identi-
fies whether the frame is voiced or unvoiced (see Section IV
for details on the pitch detection and voiced/unvoiced decision
algorithms).

In the voiced/unvoiced decision, obtained separately for
each frame, the decision is biased in favor of voiced frames
over the unvoiced frames. That is, the algorithm is designed to
make errors only in one direction (i.e., to label unvoiced frames
as “voiced,” rather than labeling voiced frames as “unvoiced”).
The errors in voiced/unvoiced labeling can be corrected by
further processing the voiced frames after decomposition. For
example, one will obtain a periodic component with almost no
energy for frames incorrectly labeled as “voiced.”

Let us denote the sets of frequency samples in the har-
monic and noise regions as and respectively. A
straightforward method is to use the DFT coefficients in the
harmonic regions and perform an IDFT to obtain the periodic
component. Likewise, one can use the DFT coefficients in the
noise regions to derive the aperiodic component. But a better
approach is to use this information as an initial estimation
and to reconstruct the periodic and aperiodic components
iteratively as discussed in the next section.

III. I TERATIVE RECONSTRUCTION

OF THE RANDOM COMPONENT

A first approximation of the aperiodic components can
be obtained in the frequency domain by selecting suitable
frequency samples But this first approximation is not sat-
isfactory: it is not physically significant, because the spectrum
of the aperiodic component is a spectral comb. The problem
addressed in this section is the reconstruction of the aperiodic
component for all frequencies in the complex spectral domain.
This problem can be viewed as an extrapolation problem, and
we will make use of an extrapolation algorithm to solve it.

We propose an iterative procedure to reconstruct the aperi-
odic component first, and then use it to determine the periodic
component. Note that the harmonic regionscorrespond to
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the positive portion of the log spectrum in Fig. 2. But the
DFT coefficients in some parts of these harmonic regions may
be contributed to mainly by noise. This is true especially in
the low signal-to-noise ratio (SNR) regions of the spectrum
of the speech signal. On the other hand, in the valley regions
of the harmonics, namely, in the noise regions the DFT
coefficients are mainly due to noise. This is evident from
Fig. 4, where the valley regions are mostly dominated by the
noise part (dotted line), whereas the harmonic or peak regions
are sometimes affected by the noise part as well.

Thus, we hypothesize that the DFT coefficients in the val-
leys between harmonic regions (i.e., noise regions) are mostly
due to aperiodic component only. In practice, the sidelobe
effects of the windowing may produce significant values in
the noise regions. We discuss the effects of windowing in
Section IV, in the light of experimental results. For the present,
we assume that the subsetof the frequency samples provide
an initial estimation of the aperiodic part. The problem is to
estimate the complex aperiodic component in the harmonic
regions in the frequency domain.

An iterative method for bandlimited signal extrapolation
problems was proposed by Gerchberg and Papoulis [20, pp.
244–248]. We extend the method for the case of comblike
filtered noise spectrum to reconstruct the aperiodic component.
Starting with zero values in the harmonic regions and the
actual DFT coefficients in the noise regions, an estimate of
the aperiodic component in the harmonic regions is obtained
by iteratively moving from the frequency domain to the time
domain and vice versa, imposing finite duration constraint in
the time domain, and the known noise samples constraint in
the frequency domain.

Let be the number of points in the DFT computation.
Then the number of data samples should be less than or equal
to In our case, we assume data samples (with

even). Let and represent the true aperiodic
component and its DFT, respectively, that we are trying to
reconstruct by the iterative algorithm. Note that for

and for (noise regions in the
frequency domain), where are the DFT coefficients of
the analysis segment of the LP residual.

The iterative algorithm for reconstruction of the aperiodic
component is as follows:

First Iteration: We form the initial estimate of the DFT
samples of the aperiodic component as

for (noise regions)
otherwise

(8)

and compute its IDFT Since we have started with a
segment of data samples, and we are using a-point
DFT, the time samples beyond are set to zero. That
is, form a signal

for
otherwise.

(9)

th iteration: Starting with we compute the DFT
of and form the function

for
otherwise

(10)

and compute its IDFT The time samples beyond
are set to zero. That is

for
otherwise.

(11)

We shall show that the functions tends to as
m in the mean square (MS) sense.

Since for and
for we have

(12)

Likewise, in the frequency domain, since
for (noise regions), and

for we have

(13)
Using Parseval’s formula for the discrete case, we have the

following result:

(14)

This result shows that successive iterations will reduce the
mean-square value of the error

(15)

Furthermore, the limit of this error is zero (i.e. the functions
tends to as The limit exists because

the error is nonnegative and decreasing.
Suppose that the limit is strictly positive (and not zero).

In this case there exists a function and the
functions tend to as We have

for
otherwise.

(16)

In the time domain, we have also for
This is because the functions tend to as
Form the difference between and This function must
satisfy

for
otherwise

(17)

and for In other words, must be a
comb-filtered signal in the frequency domain, because it is
zero for and it must also be bounded in time to the
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(a)

(b)

Fig. 5. Log magnitude spectra of a frame of the noise component of
excitation for a vowel: (a) before the start of iterations; (b) after ten iterations.

interval Clearly, these two constraints can not be
satisfied simultaneously. Therefore, and the functions

converge to
Therefore, the iterations can be repeated until the difference

between the energies of the aperiodic component for
two successive iterations is below a prefixed threshold.

Fig. 1 summarizes the algorithm for the proposed method
of decomposition. Fig. 5 shows the reconstructed aperiodic
component spectra for a vowel segment before the start of the
iteration and after ten iterations. In this example, the selection
of harmonic regions was done using the regions of positive
values in the function plotted in Fig. 2. It is interesting to note
that the samples of the aperiodic component build up in the
harmonic regions after every iteration.

Similar iterative algorithms can be developed for recon-
struction of the periodic component in the noise regions or
reconstruction of both aperiodic component in the harmonic
regions and periodic component in the noise regions, simulta-
neously. We have found that the results are not significantly
different in all these cases. Hence, we have used only the
aperiodic component signal reconstruction algorithm.

The periodic component is obtained by subtracting the
aperiodic component obtained at the last iteration from
the residual signal. Fig. 6 shows the spectra of a segment of
the LP residual, the periodic and aperiodic components using
the proposed iterative algorithm. It is interesting to see that
the proposed method has indeed modified the spectral shape,
especially in the low amplitude periodic regions.

Note that, in this method, the decomposition is practically
imposed by the choice of the harmonic and noise regions
in the frequency domain. The iterative algorithm helps in
obtaining realizable component signals satisfying the imposed
constraints in the frequency domain and the finite support
constraint in the time domain. In this process, the unknown

(a)

(b)

(c)

Fig. 6. Log magnitude spectra derived from a voiced segment. (a) Spectrum
of LP residual. (b) Spectrum of the aperiodic component of the LP residual
signal. (c) Spectrum of the periodic component of the LP residual signal.

aperiodic component values are built up in the harmonic
regions. The iterative algorithm thus can be viewed as deriving
a physically realizable signal starting with an ideal comb filter
in the frequency domain.

The periodic and aperiodic components of the residual
are obtained for each overlapping analysis frame, and the
component for the entire utterance is derived by simply adding
the sample values in the overlapping regions for successive
frames. The speech signals corresponding to these components
can be generated by passing these component residual signals
separately through the time varying all-pole filter.

IV. EXPERIMENTS

In this section, we discuss some experimental results ob-
tained with the proposed algorithm. Synthetic speech is con-
sidered first. Then application of the method to natural speech
is discussed.

A. Decomposition of Synthetic Speech: Methodology

First, we have considered the case of a synthetic voiced
segment to study the behavior of the algorithm, and partic-
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Fig. 7. Effect of the iterations on the reconstruction of the aperiodic compo-
nent in spectral domain. Log magnitude spectrum of the aperiodic component
of the LP residual signal (in the 0–1 kHz band) computed with zero, one,
ten, and 20 iterations.

ularly the sidelobe effects due to windowing the residual.
An all-pole model was excited with a glottal pulse with
different levels of noise around the glottal closure. In this
first series of experiments, synthetic voice was preferred for
evaluation, because it allowed for an accurate control on all
the signal parameters. Moreover, the case of breathy vowels
was considered because it is a difficult and interesting situation
of periodic and aperiodic mixture in actual speech.

All the synthetic stimuli were generated by means of a
formant synthesizer [21]. The excitation part of the synthetic
signals was the sum of two components: glottal pulse (using
the classical LF-model [22]) and noise burst. Noise bursts were
made of Gaussian white noise modulated by a rectangular
time window, centered around the instant of glottal closure.
Formant filters were set according to the acoustic values of
the French vowel /a/. Pitch was either 120 or 200 Hz (the
average values for male and female speakers). Duration of the
noise burst was varied is three steps: 0, 60, and 100% of the
fundamental period (i.e., 0, 5, and 8.3 ms for the 120 Hz pitch
condition and 0, 3, and 5 ms for the 200 Hz pitch condition).
The periodic to aperiodic ratio (or HNR) was varied in four
steps: dB (no aperiodic synthetic signal), 20, 10, and 5 dB.
This HNR corresponds to the power ratio between the glottal
pulses signal and the noise bursts signal.

Three synthetic signals were computed for each condition.
The synthetic aperiodic component was obtained by passing
the aperiodic part of the source (a train of pitch-synchronous
noise bursts) through the vocal tract formant filters. The
synthetic periodic component was obtained by passing the
periodic part of the source (a train of glottal pulses) through
the vocal tract formant filters. The plain synthetic signal was
the sum of the synthetic aperiodic component and the synthetic
periodic component. Three signals where also obtained after
decomposition of the total synthetic signal: the measured
aperiodic component, the measured periodic component, and
the plain measured component, which is formed by summing
the measured aperiodic component and the measured periodic
component. Figs. 8 and 9 give an example of five versions
of a signal used in the experiments. The signal at the top of
the graph is the plain synthetic signal. The second and third
signals are the synthetic aperiodic and measured aperiodic
components. The two signals at the bottom of the figure are
the synthetic periodic and measured periodic components.

Fig. 8. Oscillograms (from top to bottom) of: synthetic signal; the cor-
responding synthetic aperiodic component; measured aperiodic component;
synthetic periodic component; measured periodic component.F0 = 80 Hz;
burst duration= 100% of 1=F0;HNR = 5 dB:

B. Decomposition of Synthetic Speech: Results

Quantitative assessment of the algorithm was obtained by
comparing the HNR of the synthetic signals (power ratio of
the synthetic periodic signal and synthetic aperiodic signal)
with the corresponding HNR measured for decomposed signals
(power ratio of the measured aperiodic signal and the measured
periodic signal). If the decomposition method was perfect, we
should expect the measured HNR to be equal to the input
HNR, for all the conditions. The results, reported in Table I,
show that the measured HNR is actually close to the input
HNR for all the conditions. The difference is on average less
than 1.7 dB, for the 20, 10, and 5 dB conditions. When there is
no aperiodic component in the synthetic signal, the measured
aperiodic component is about 40 dB lower than the measured
periodic component. This gives an idea of the accuracy of the
method: the artificial aperiodic component resulting from the
decomposition of a synthetic periodic signal is actually very
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Fig. 9. Oscillograms of (from top to bottom): synthetic signal; the cor-
responding synthetic aperiodic component; measured aperiodic component;
synthetic periodic component; measured periodic component.F0 = 80 Hz;
burst duration= 60% of 1=F0;HNR = 5 dB:

weak. Therefore, the method seems acceptable for practical
HNR measurements.

The results show that accuracy of the decomposition does
not seem dependent on the pitch of the synthetic signal, or
on the duration of the noise burst. Figs. 8 and 9 compare the
synthetic signals with the measured signals in time domain. In
Fig. 8, there is no time modulation of the aperiodic component.
In Fig. 9, the noise bursts last 60% of the fundamental
period. This indicates that time-modulation of the aperiodic
component is preserved by the decomposition.

Fig. 7 shows the effect of the iterative algorithm for recon-
struction of the aperiodic component in the spectral domain.
The magnitude spectrum of a frame of the synthetic signal is
displayed in the 0–1 kHz frequency band. The straight line is
the magnitude spectrum of the synthetic aperiodic component.
Dotted lines correspond to the measured aperiodic component,
which is obtained after zero, one, ten, and 20 iterations.
Twenty iterations were used in the experiments because some
trials showed that almost no improvement resulted from more

TABLE I
HNR MEASUREMENTS FORPERIODIC/APERIODIC DECOMPOSITION OFSYNTHETIC

SIGNALS. F0: FUNDAMENTAL FREQUENCY. BDR: BURST DURATION

RATIO (RATIO OF BURST DURATION TO FUNDAMENTAL PERIOD). HNR:
HNR FOR SYNTHETIC SIGNALS. MEASURED HNR: HNR OBTAINED

AFTER DECOMPOSITION. DIFFERENCE: DIFFERENCEBETWEEN HNR
FOR SYNTHETIC SIGNAL AND HNR OBTAINED AFTER DECOMPOSITION

iterations (the average difference in HNR between ten and 20
iterations was only 0.1 dB).

Direct decomposition using the signal rather than the LPC
residual was also tried. The result showed that decomposition
is still good, but that the difference between input HNR and
measured HNR degrades slightly. This loss in accuracy is
about 1 dB on average. This indicates that LPC decomposition
is useful, but that rather good results can also be obtained
without it.

In practice, the decomposition algorithm is dependent on
several parameters (fast Fourier transform size, zero-padding
size, window type, and window size) as usual with processing
methods based on the short term Fourier transform (STFT).
The analysis-synthesis parameters used for this experiments
were: sampling rate, 8 kHz; FFT size, 1024 points; window
type, Hamming; window length, 511 points64 ms; LPC, 10
coefficients, autocorrelation method; overlap between frames,
8 ms; 20 iterations. The number of iterations was chosen
when the average difference between iteration was less than
0.1 dB. All the synthetic signals were voiced, therefore no
voiced/unvoiced decision was necessary. Although pitch was
known for the synthetic signals, a pitch detection algorithm
was used [23] for the initial estimation of harmonic and noise
regions. Therefore, experiments conducted with synthetic and
natural speech are comparable.

The experiments conducted with synthetic speech demon-
strated that the algorithm is able to decompose with a good
accuracy a synthetic mixture of periodic and aperiodic compo-
nents. Therefore, it can be used for analysis of natural speech.
Some examples are given in the next section.

C. Decomposition of Natural Speech

We have decomposed the speech from sentences uttered
by various speakers into periodic and aperiodic components.
Throughout, we have considered speech signals sampled at
8 kHz. The speech utterance was first analyzed to deter-
mine voiced and unvoiced segments and the pitch period for
voiced segments. The spectral comb pitch detection analysis
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method was used in the experiments [23]. The voiced/unvoiced
decision was taken on the basis of thresholds for signal
energy, lowpass energy and zero-crossing. Each frame was
classified either “voiced” or “unvoiced.” Unvoiced frames
were not further processed. Periodic/aperiodic decomposition
was applied to voiced frames only.

The LP residual segments belonging to voiced segments
were decomposed into periodic and aperiodic components
(tenth-order LP analysis, frame size 32 ms, shift of 4 ms).
For each frame of these segments, the data was multiplied by
a Hamming window of size 255 samples. The algorithm was
based on computation with 512-point DFT’s and IDFT’s. After
reconstruction of the aperiodic component, it was appended
with the residual of the unvoiced segments. The resulting
periodic and aperiodic components of the LP residual were
used to excite the time-varying all-pole LP filter. The periodic
and aperiodic components of the speech signal were then
obtained.

Fig. 10 shows the wideband spectrograms of the original
signal and of the periodic and aperiodic component signals,
for an utterance of a sentence by a male speaker. It can
be seen that most of the noisy part of the spectrogram
in the top of Fig. 10 has been removed in the periodic
component, displayed in the middle of Fig. 10. Also, one can
hardly see any periodic component in the spectrogram for the
aperiodic component given in the bottom of Fig. 10. Thus,
we could effectively separate these two components using
the proposed decomposition algorithm. Subjective listening
to these component signals also confirm this observation:
the aperiodic component sounds like whispered speech. Note
that the significant low-frequency energy in the aperiodic
component can be attributed to turbulence noise at the glottal
closure in the voiced segments.

Fig. 11 shows narrowband spectrograms for an utterance of
the same sentence by a female speaker. Here also we have
been able to accomplish the decomposition effectively, using
the proposed algorithm. It must be noted that the aperiodic
component may appear more important in the spectrograms
than it actually is, because automatic gain control is used in
the spectrographic display. However, the signal amplitudes are
consistent among spectrograms.

V. CONCLUSIONS

In this paper, we have proposed a new method for decom-
posing the excitation part of voiced speech into deterministic
and stochastic components. These components correspond
to the quasiperiodic and aperiodic parts of the excitation.
Compared to the sinusoidal coding based methods, our de-
composition method has the advantage of better modeling of
the aperiodic component, because both periodic and aperiodic
components are assumed to be present at each sample in the
frequency domain. The method uses the known noise regions
in the spectrum, and reconstructs the aperiodic component
in the harmonic regions. A signal that is primarily due to
quasiperiodicity is then obtained by complex substraction
of the aperiodic component in the spectral domain. The
method performs the decomposition on an estimate of the
excitation source signal rather than on the speech signal itself

Fig. 10. Wideband spectrogram (male voice),ce voyage, propos`e . . .. Top:
original speech. Middle: periodic component. Bottom: aperiodic component.

directly. This reduces the sidelobe effects of windowing on
the decomposition. The linear prediction residual is used as an
estimate of the excitation, although any method can be used
to obtain an estimate of the excitation signal from speech.

Systematic assessment of the proposed decomposition al-
gorithm has been carried out on simulated data. This was
necessary to determine the usefulness of the proposed decom-
position method to study natural speech. Synthetic data was
chosen as it enabled us to control the voice characteristics by
varying parameters. The result of these studies showed that the
decomposition algorithm is able to separate aspiration noises
and the periodic noise in the voice source. Further experiments
devoted to the effect of other sources of voice aperiodicity (like
jitter, shimmer, or large changes in pitch) are reported in [24]
and in a companion paper [25].

The proposed method is conceptually simple, and is easy
to implement. However, the amount of computation is large:
a pair of DFT/IDFT is needed for each iteration, due to the
extrapolation algorithm used. Therefore, real-time implemen-
tation of the method might require some special attention if
a large number of iterations is to be used. The experiments
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Fig. 11. Narrowband spectrogram (female voice),Je pense que Marie et Jean
. . .. Top: original speech. Middle: periodic component. Bottom: aperiodic
component.

indicated that less than ten iterations are sufficient in practice:
then, close to real-time versions of the algorithm can easily be
written on modern general purpose computers.

Periodic/aperiodic decomposition of the speech signal seems
relevant for studying voice quality features, and in particular,
breathiness or roughness of voices. It can also be used for
modification of voice quality in the context of speech synthesis
[8], or to produce voices with desired source characteristics.
The decomposition algorithm was studied in the context of
speech signals. However, it is a general technique that may
be valid in many other situations as well. As a matter of
fact, signals made of a mixture of periodic and aperiodic
components are rather common in musical acoustics [26],
[27], industrial sound and vibration, and biomedical signal
processing, for instance.
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