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Summary
A unified description of the most-common glottal-flow models (KLGLOTT88, Rosenberg C, R++, LF) is pro-
posed in the time domain, using a set of five generic glottal-flow parameters: fundamental period, maximum
excitation, open quotient, asymmetry coefficient, and return-phase quotient. A unified set of time-domain equa-
tions is derived, and their analytical Laplace-transform computation leads to a set of frequency-domain equations.
On the basis of this mathematical framework, the spectral properties of the glottal-flow models and their deriva-
tives are studied. It is shown that any glottal-flow model can be described by a combination of low-pass filters,
the cut-off frequencies and amplitudes of which can be expressed directly in terms of time-domain parameters.
The spectral correlates of time-domain glottal-flow parameters are then explored. It is shown that the maximum
excitation corresponds to a gain factor, and that it controls the mid-to-high-frequency spectral slope. A non-null
return-phase quotient adds an additional spectral tilt in the high-frequency part of the glottal-flow spectrum. The
open quotient and asymmetry coefficient are related to the low-frequency spectral peak, also called the glottal
formant. The glottal-formant frequency is mainly controlled by the open quotient, and its amplitude (or band-
width) by the asymmetry coefficient. As a direct application, it is shown that the amplitude difference between
the first two harmonics, commonly assumed to be correlated to the open quotient, is also theoretically dependent
on the asymmetry coefficient.

PACS no. 43.70.Bk, 43.70.Gr, 43.72.Ar

1. Introduction

Linear acoustic theory describes speech production in
terms of a source/filter model [1]. This model consists of
a volume velocity source, which represents the glottal sig-
nal, a filter, associated to the vocal tract, and a radiation
component, which relates the volume velocity at the lips
to the radiated pressure in the far acoustic field. From the
point of view of physics, this model is only an approxima-
tion, whose main advantage is simplicity. It is considered
valid for frequencies below 4 to 5 kHz, where the assump-
tion of plane wave propagation in the vocal tract seems
acceptable.

Most of the speech features related to voice quality, vo-
cal effort, and prosodic variations can be associated with
the voice source function. Thus, modelling this compo-
nent of the speech production model is essential in speech
analysis and synthesis, and speech perception. The ap-
proach that is chosen in this study is voice source sig-
nal modelling, following the pioneering work of Fant [2],
Rosenberg [3] and others. In this signal analysis approach,
most of the glottal flow models proposed are time-domain
models [3, 4] (KLGLOTT88 model), [2] (LF model), [5]
(R++ model), [6]). Time-domain models have a num-
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ber of advantages. The first is that timing relationships
are very important for modelling the glottal flow signal.
The model parameters are always functions of some tem-
poral phases of the signal, like the fundamental period,
the open quotient (a measure of the relative open dura-
tion) or the speed quotient (a measure of the flow asym-
metry). Another reason for studying the glottal flow in
the time domain is that the glottal activity can be studied
along with other time-domain physiological analyses, like
electroglottography, high-speed cinematography or elec-
tromyography.

In areas such as speech synthesis, voice quality analysis,
or speech processing, a frequency-domain approach also
appears to be desirable. Generally, voice quality is better
described by spectral parameters. For instance, Hanson [7]
or Klatt [4] found that the main spectral parameters for
synthesizing voices with different qualities are: 1. spectral
tilt; 2. amplitude of the first few harmonics; 3. increase
of first formant bandwidth; 4. noise in the voice source.
Several authors were interested in measuring the rate of
decay of the voice source spectrum. Childers and Lee [8]
presented the harmonic richness factor for measuring the
source spectral decay. This parameter is the amplitude ra-
tio between the fundamental and the sum of the higher har-
monics. Alku et al. [9] presented the parabolic spectral pa-
rameter. This parameter represents the rate of decay of the
low frequencies, for the inverse-filtered pitch-synchronous
spectrum. It may also be related to some features of differ-
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ent phonation types. Oliveira [10] used an analytical for-
mula for the spectrum of the KLGLOTT88 model. He es-
timated the model parameters in the frequency domain by
minimization of the differences between speech parame-
ters and the model parameters. Fant and Lin [11] used
some approximations of the LF model spectrum rather
than any analytical formulation. They re-analyzed an old
database in order to estimate source parameters. Doval
et al. [12] focused on the open quotient estimation by
spectral fitting of a 2nd order model of inverse filtered
speech, according to an analytical formulation of the KL-
GLOTT88 model. In the present situation, the exact corre-
spondence between time-domain parameters and the spec-
trum is still unclear, mainly because most work has been
empirical, without analytical formulas for the spectrum of
those models, and without a spectral model of the glottal
flow.

In most of the studies we have been able to locate on
the spectrum of glottal flow, the spectrum has been ob-
tained by numerical Fourier transform of the glottal wave-
form. Therefore, it seemed important to develop analyti-
cal formulae for the spectrum of glottal flow, in order to
gain better insight into the spectral features and proper-
ties of the voice source. Moreover, in some applications,
like speech analysis/synthesis, where it would be impor-
tant to change voice quality, a spectral model of the glottal
flow signal would be desirable. It must be emphasized that
the spectral domain is mathematically equivalent to the
time domain, only if complex spectra are considered. In
this case, time and frequency domains are related through
the Fourier transform. But spectral magnitudes and spec-
tral phases do not play the same role (although they are
merged in time domain). For speech processing, one can
take advantage of this separation in the frequency domain
because spectral processing does not require the use of cal-
ibrated measurement equipment for speech recording. For
example, phase distortion is acceptable for spectral pro-
cessing, although it is a well-known source of problems
for time-domain processing, because it can significantly
change the signal waveform.

It is acknowledged that the general shape of the glottal
flow magnitude spectrum is low-pass. Thus, the magnitude
spectrum of the glottal flow derivative is band-pass, with a
single maximum located in the vicinity of the fundamental
frequency (F0) or its second harmonic. This spectral max-
imum has been called the “glottal formant” [13], because
it appears in the speech spectrum as a spectral maximum,
generally located below the first vocal tract formant (F1).
The term “voicing bar” is sometimes used for this first
spectral maximum observed on spectrograms. The aim of
this work is to study the position, variation and properties
of the glottal formant in a unified framework, and to give
explicit equations for relating time-domain glottal flow pa-
rameters to the glottal formant.

This study has many interesting outcomes: 1. it de-
fines the spectral behaviour of most common glottal flow
models and, more specifically, the variation of the voice
source in the frequency domain. A set of spectral parame-

ters is proposed. 2. it gives the relationships between time-
domain and spectral parameters. 3. it gives some hints for
spectral estimation of glottal flow parameters and spectral
modification of glottal flow parameters.

In a first part of this paper (section 2), a unified view of
time-domain glottal flow models is proposed. It is shown
that the KLGLOTT88, Rosenberg C, R++ and LF models,
and all the time-domain models built on similar principles,
can be represented using a unified set of parameters. It is
then possible to consider the properties of all these models
in a common framework.

The glottal formant is then introduced in section 3. It is
shown that the main features of glottal flow spectra can be
represented by the frequency response of a combination of
low-pass filters (defined by the “glottal spectral peak”, and
the “spectral tilt filter”). The links between parameters of
the glottal flow spectra and time-domain parameters of the
glottal flow waveform are established.

In section 4, the variation of the glottal formant is com-
puted. These results give some insights into the possi-
ble variations of the glottal formant, and into the rela-
tionships between variations of time-domain parameters
and frequency domain parameters. The relationships be-
tween harmonic amplitudes, open quotient and other pa-
rameters are specifically studied. Then the spectral corre-
lates of time-domain glottal flow parameters are reviewed.
Sound examples accompany these analyses, in order to en-
hance the reader’s understanding of the spectral variations
of glottal flow models. A summary of the results obtained
is given in section 5.

2. Time-domain description of glottal flow
models

The aim of this section is to analyze in a common frame-
work some glottal flow models (GFM) that have been pro-
posed in the literature: KLGLOTT88 [4], Rosenberg C [3],
R++ [5] and LF [2] models. The last of these is the most
used, but the others have been included for the sake of gen-
erality.

First, it is shown that all these models have essen-
tially the same common features, despite different presen-
tations and different sets of parameters. A common set of
5 generic time-domain parameters is proposed for these
models. It is then possible to derive a unified description
that allows the specific features of each model to be under-
stood, using the generic parameters and a generic form of
each model. This unified GFM description will be useful
for computing their spectra in section 3, and for studying
spectral and time domain correspondences in section 4.

2.1. Time-domain glottal flow features

Several glottal flow models have been proposed so far.
However, they generally do not use the same number of
parameters, or the same name for similar parameters. Ini-
tially this makes it rather difficult to understand the simi-
larities and differences between models. In this section a
common framework for analysis and representation of all
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Figure 1. Phases and parameters of the glottal flow and its deriva-
tive. See section 2. (a LF model has been used to obtain the
curves).

these models is presented. All the models share the follow-
ing common features:

• the glottal flow is always positive or null.
• the glottal flow is quasi-periodic.
• during a fundamental period, the glottal flow is bell-

shaped: it increases, then it decreases, then it becomes
null.

• the glottal flow is a continuous function of time.
• the glottal flow is a differentiable function of time, ex-

cept in some situations at the instant of glottal closing.

The glottal-flow derivative is often considered in place of
the glottal flow itself. This is because, in the voice produc-
tion model, the transfer function of the radiation compo-
nent, relating the acoustic flow at the lips to the acoustic
pressure in the acoustic field in front of the lips, can be
considered as a derivative to a first approximation. Also,
the shape of the glottal flow derivative can often be recog-
nized in acoustic speech or singing voice waveform itself.
For instance, the peak of the derivative is often visible.
An example of GFM and GFM derivatives, and the GFM
derivative with a vowel, is given in sound examples 1 and
2.

The glottal-flow derivative for all the models shares the
following common features:

• the glottal-flow derivative is quasi-periodic.
• during a fundamental period, the glottal-flow derivative

is positive (when the glottal flow is increasing), then
null (glottal flow maximum), then negative (when the
glottal flow is decreasing), then null (when the glottal
flow is null).
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Figure 2. Example of 4 GFMs (top) and their derivatives (bot-
tom) with abrupt closure and with a common set of parameters:
T0 = 8ms, Oq = 0.8, αm = 2/3 and Av = 1. KLGLOTT88 and
R++ models are identical for this parameter set. The waveforms
are very similar. Note that E differs between models when Av

and the other parameters are fixed.

• the glottal flow derivative is a continuous function of
time, except in some situations at the instant of glottal
closing.

• the glottal flow derivative is a differentiable function of
time, except at the instant of glottal closing.

Generally, all the glottal flow models are described in
terms of phases in the time domain. Let us consider these
phases during one fundamental period T0 (Figure 1).

The first phase is the opening phase, when the glottal
flow increases from baseline at time 0 to its maximum am-
plitude. The maximum amplitude of the glottal flow is the
so-called amplitude of voicing Av and is reached at time
Tp.

The second phase is the closing phase, when the flow
decreases from Av to a point at time Te where the deriva-
tive reaches its negative minimum. This time Te is the glot-
tal closing instant (GCI). The absolute amplitude of this
minimum is called the maximum vocal-tract excitation (or
maximum excitation) E. Then the GCI corresponds to the
time of maximum speed of vocal-fold closure. In studies
with real speech, the glottal closing phase is often treated
as though based on the flow (and not on the flow deriva-
tive) and it is measured from the instant of the flow max-
imum to the instant of closure, which is estimated as a
time instant when the flow comes back to the DC level. As
defined above, the present study uses a slightly different
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Figure 3. Same Figure as Figure 2 but when E is kept constant
(E = 1). Note that Av differs between models when E and the
other parameters are fixed. However these differences are hardly
audible (sound examples 3, 4 and 5).

notation, where the closing phase ends at the GCI when
the derivative reaches its minimum value.

These two phases (opening and closing phases) result
in the open phase, which is characterized by the open quo-
tient Oq . This quotient is defined as a fraction of T0, thus
ranging from 0 to 1: Oq = Te/T0. The ratio between the
opening phase and the closing phase is the speed quotient
Sq = Tp/(Te − Tp).

The last phase is the closed phase. Two main cases must
be distinguished according to the shape of the GFM at the
GCI. The first case corresponds to “abrupt closure”. In this
case, there is a discontinuity in the glottal flow derivative
which instantaneously reaches 0 after maximum excita-
tion. Then the left and right derivatives of the glottal flow
exist but are different at the GCI. Mathematically, this cor-
responds to a non-differentiable glottal flow at this point.
The glottal flow (and its derivative) are null between OqT0

and T0. Examples of GFM with an abrupt closure are dis-
played in Figures 2 and 3.

The second case corresponds to “smooth closure”. Ma-
thematically the glottal flow is differentiable at the GCI, as
the derivative is continuous. In the time domain, a smooth
closure introduces a “return phase” which takes place be-
tween the GCI and the closure instant Tc. Frequently, the
time Tc is taken as T0, which means that the glottal flow
and its derivative will never be null in the closed phase
except at the single point Tc. The general form of differen-
tiable GFM is displayed in Figure 4. Mathematically the
different models use one of two ways to smooth the deriva-
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Figure 4. GFM (top) and its derivative (bottom) with abrupt or
smooth closure. Note that the return phase smoothes the disconti-
nuity at GCI but also slightly changes the whole waveform shape.

tive at the GCI: either adding a decreasing exponential
(“return phase method”) or passing it through a low-pass
filter (“low-pass filter method”). The return phase method
has been originally proposed by Fant [2] in the LF model.
Veldhuis [5] proposed a general approach for using the re-
turn phase method for any time-domain GFM. It consists
in adding a decreasing exponential to the GFM derivative
between the GCI and the closure instant. This exponen-
tial is parameterized by its time constant Ta which char-
acterizes the speed of return. Because the exponential al-
ways has to be decreasing, this value cannot be greater
than the duration between the GCI and the end of the pe-
riod: Ta < T0 − Te. The drawback of this method is that
it implies the use of a supplementary hidden parameter,
the value of which has to be obtained by resolving an im-
plicit equation. This is due to the constraint that the GFM
derivative must have a null integral, so that the GFM must
have the same value at its start and end points (the base-
line is constant). However, to avoid this drawback, some
authors have proposed a floating GFM baseline, achieved
by modelling the return phase independently of the first
phases [14].

The low-pass filter method has been introduced by [4].
It consists of filtering the GFM derivative by a first-order
(or second-order) low-pass filter. It mainly affects the dis-
continuity at the GCI, convolving it by the filter impulse
response. As this impulse response is also a decreasing
exponential, it can be parameterized by its time constant
Ta, and the corresponding return phase is very close to this
exponential.
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It should be noticed that, except in the case where no
constraint is applied on the baseline for the “return phase”
method, both methods modify the shape of the opening
and closing phases even if the other parameters are kept
constant. However the position of the GCI is not changed.
But while the return phase method does not change the
position of the glottal flow maximum, the low-pass filter
method not only changes it but introduces non null values
after the end of the period, since the impulse response of
the filter is infinite.

To take the return phase into account, Fant and others
proposed a modified definition of the open quotient as:
Oq = (Te + Ta)/T0. However, in this paper, we do not
use this modified definition.

2.2. A common set of time-domain parameters

The different GFMs are described by different sets of pa-
rameters. But, as a matter of fact, many alternative sets
of parameters can be used to describe a single model. For
instance, for a LF model, the parameters (Te, Tp, Ta) are
often replaced by the parameters (Rg, Rk, Ra) [15]. And
fortunately the same parameters can very often be used for
different models with the same meaning (think of the open
quotient, for instance). Thus it is necessary to search for a
common set of parameters to describe the studied GFMs,
even if this common set implies a rewrite of the relevant
mathematical expressions.

One way to obtain such a common set of parameters
is to consider each GFM as a family of curves which is
specified by control points through which the curves must
pass (there will be as many control points as the number of
parameters). If we define these points by the general prop-
erties of the glottal flow expressed above, then the control
points will be independent of a particular GFM. For ex-
ample, (Tp,0) or (Te,−E) are control-point candidates of
the GFM derivative. In this framework, we chose as con-
trol points of the GFM derivative: (0,0), (Tp,0), (Te,−E),
(T0,0) and the right-side derivative of point (Te,−E) to
specify the return phase.

We are now left with the choice of a parameter set that
describes these control points. For instance (E, T0, Te, Tp,
Ta) and (E, T0, Oq , Sq , Ta/T0) are possible sets. A good
parameter property is to be dimensionless. In particular
this allows the bounds for useful parameter values not to
depend on other parameters. For example, useful values
for the open quotient are from 0.3 to 0.8, but the corre-
sponding bounds on Te depend on T0 (0.3∗T0 to 0.8∗T0).
The same is true for the speed quotient which generally
lies between 1.5 and 4, while the corresponding time Tp
depends on Te which itself depends on T0.

Therefore, from now on, we shall use the following set
of 5 time-domain parameters:
• E, the maximum excitation.
• T0, the fundamental period.
• Oq , the open quotient, defined by the ratio between the

open phase duration and the fundamental period.
• αm, the asymmetry coefficient, defined by the ratio be-

tween the opening phase and the open phase durations.

• Qa, the return phase quotient, defined by the ratio be-
tween the return phase time constant and the duration
between the GCI and the end of the period: Qa =
Ta/[(1 − Oq)T0].

The parameterE generally corresponds quite well with the
main speech waveform peak in the time domain. There-
fore, in practice, it may be more appropriate than the am-
plitude of voicing Av .

The parameter Oq controls the relative duration of the
glottal flow pulse as it defines the GCI relatively to T0:
the GCI is at time Te = OqT0. Thus, if Oq is small, the
glottal pulse is narrow; if Oq is larger, the glottal pulse is
wider. More precisely, the flow is stretched proportionally
to Oq. Oq ranges from 0 to 1. It is related to pressed versus
relaxed voice quality [4]. This parameter can be measured
during phonation using electroglottography [16] without
the need for any glottal flow model.

The parameter αm controls the degree of asymmetry of
the glottal pulse as it defines the instant of maximum of the
glottal flow relatively to T0 and Oq: this instant is at time
Tp = αmOqT0. Theoretically it ranges between 0 and 1 but,
for real speech Signals, the glottal opening phase is always
longer than the glottal closing phase (see [17] where Titze
has shown with the help of a physical model that this skew-
ing to the right is mainly attributable to source-tract non-
linear interaction). Thus, αm range is restricted to [0.5, 1],
with typical values around 0.6 to 0.8. For mathematical
reasons, most models restrict this range again ([0.65, 1.0[
for LF, ]0.5, 0.75] for R++, see details in Appendix A2).
When αm is high, the flow is very asymmetric and it has an
impulse-like shape. When αm is low (near 0.5), the flow
tends towards a sinusoidal waveform. The asymmetry co-
efficient, which has been introduced by [18], can be related
to the speed quotient by: αm = Sq/(1 + Sq).

The return phase quotient, introduced in [19], is the rel-
ative duration of the return phase. It ranges from 0 to 1,
the special case Qa = 0 corresponding to an abrupt clo-
sure. When Qa is high, the glottal flow discontinuity is
smoothed, corresponding to soft voices.

Another interesting glottal flow parameter, which is not
described in the literature, is the total flow I , defined by the
glottal flow integral between 0 and T0. Its importance will
become apparent when the spectrum is described. This pa-
rameter can be deduced from the 5 preceding parameters
as we will see in the following section.

2.3. A generic glottal flow model

All the glottal flow models can be described using the set
of 5 parameters defined above, thanks to some straightfor-
ward algebra, as is shown in Appendix A1 for the four
models considered. This raises the question of the dif-
ferences between models: what makes a particular model
unique? To better answer this question, we would like to
concentrate on how each model performs with our 5 pa-
rameters. The amplitude and the periodicity parameters
are easily treated, since their effects are independent of
any given model. The return phase parameter effect will
be treated separately (see section 3.4). We are left with the
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2 last parameters Oq and αm. It is show below that, in the
case of abrupt closure and for all the models we have stud-
ied, Oq can be factorized in the expression for the GFM.
In other words, its effect (shrinking or stretching the time
scale) will be the same whatever the model.

To go into more detail, we must first consider P =
(E, T0, Oq, αm, Qa), the set of time-domain parameters
that have been chosen and Ug (t;P ), the expression of
the glottal flow which is a function of these parameters.
The derivation is easy in the case of an abrupt closure
(Qa = 0). In this case, each parameter can be isolated
in the mathematical expression of the glottal flow Ug . The
glottal flow considered in only one period can be rewritten
as follows, whatever the model:

Ug (t;P ) = EOqT0ng

( t

OqT0
; αm
)

, 0 ≤ t ≤ T0, (1)

where ng (τ; αm) is a function of time τ which depends on
only one parameter, namely αm, and on which uniqueness
of a given model is concentrated. In this paper this func-
tion will be called the “generic model”. It is obtained by
setting E = 1, T0 = 1 and Oq = 1 in the expression of
Ug (t;P ). The expression for this generic model is derived
for the four models in Appendix A2. The differences be-
tween generic models are rather minimal and only lie in
the particular mathematical functions used in each case.

As the voice source is periodic, the expression of the
glottal flow must be periodically repeated at the rate F0 =
1/T0:

Ug (t;P ) = EOqT0ng

( t

OqT0
; αm
)

∗ ⊥⊥⊥T0 (t), (2)

where ⊥⊥⊥T0 (t) is a Dirac comb with fundamental period
T0.

According to equation (2), Ug can be obtained by tak-
ing the ng function between 0 and 1, applying to it a time
scaling ofOqT0 (the function is now defined between 0 and
OqT0) and an amplitude scaling of E, and finally repeating
it at a rate of T0. Note that OqT0 represents a multiplica-
tive coefficient which compensates for the time scaling, so
that the final maximum excitation is actually E. Thus E
behaves as a gain parameter, Oq and T0 are time stretch-
ing/shrinking parameters, and T0 is used for periodic rep-
etition. Parameter αm gives the shape of the glottal flow.
The glottal waveform is model dependent according to the
ng expression. However, as can be seen on Figure 2, all the
GFMs will look very similar when the same parameters
are used.

The amplitude of voicing and the total flow depend on
the 4 basic parameters. It is possible to derive these rela-
tionships using equation (2). Since the amplitude of voic-
ing Av is the maximum of Ug in one period, by taking the
maximum on both sides of equation 2, it is found that Av
is related to the maximum of ng , av (αm) according to:

Av = av (αm)EOqT0.
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Figure 5. Generic model and its derivative. In the case of abrupt
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using only the parameter αm.

Because Ug reaches its maximum at time Tp = αmOqT0,
by definition, we can also obtain the same result by substi-
tuting Tp in equation (2). This leads to a method of com-
puting av (αm): av (αm) = ng (αm; αm) (see Figure 5).

Similarly, since the total flow I is the integral of the
glottal flow over one period, taking the integral of both
sides of equation 2 shows that I is related to the integral
of ng , in(αm), by:

I = in(αm)E(OqT0)2. (3)

It is straightforward to obtain the GFM derivatives by tak-
ing the time derivative of equation (2):

U ′g (t;P ) = Eng′
( t

OqT0
; αm
)

∗ ⊥⊥⊥T0 (t). (4)

Unfortunately, in the general case of differentiable GFM
(with smooth closure, Qa 6= 0) it is no longer possible to
compute analytic expressions for the generic models that
would be independent of Oq and T0. This is because the
GFM is no longer null between OqT0 and T0 due to the
return phase, and then there is a bound on the definition of
ng that depends on Oq and T0.

In summary, one can consider that the different glottal
flow models are all very similar. All the models can be rep-
resented by the same set of 5 parameters. Notice however
that the KLGLOTT88 and the Rosenberg C models have
only 4 parameters, the asymmetry coefficient being fixed
at 2/3 for the KLGLOTT88 model, and the return phase
quotient being null for the C model. All the models are
pulse-like and the amplitude of the pulse depends on E.
The relative width of the pulse depends on Oq . The rate of
repetition of the pulses depends on T0, which is therefore
responsible for the voice melody. The pulse shape depends
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on the asymmetry coefficient αm in a way that is specific
to each model. This asymmetry coefficient mainly con-
trols the skewness of the pulse. The return phase quotient
smoothes the glottal waveform at GCI. If all these parame-
ters are fixed, the only remaining difference between mod-
els is therefore the specific mathematical functions used
for their definition. This difference does not seem to be
very significant in practice (see sound examples 3, 4 and
5).

The main advantage of computing a generic model is
that it makes clear the similarities of models through a
common set of parameters. But the generic model is also
useful for computing the spectra and for interpreting the
spectral effects of the parameters, as will be shown in the
next section. Finally, the generic model of any other GFM
may also be computed using the same framework.

3. Spectral description of glottal flow mod-
els

In this section, decomposition of glottal flow waveforms
using generic parameters and their generic forms is used
for deriving the spectrum of glottal flow models. It is
shown that GFM can be considered as low-pass filter im-
pulse responses. The frequency responses of four GFM are
derived in analytical form. It is then possible to study the
main features of these frequency responses and to propose
a stylized form of the GFM spectra based on the glottal
formant and the spectral tilt. This representation will be
used in section 4 for studying the spectral effect of generic
time-domain parameters.

3.1. Glottal flow models as Low-pass filters

Since the early years of the source-filter theory of speech
production, it is well known that the effect of the glottis
in the spectral domain can be approximated by a low-pass
system. With this the glottal flow signal is considered as
the output of this low-pass system to an impulse train. In
a transmission line analog, Fant [1] used four poles on the
negative real axis in the form:

Ug (s) =
Ug0

∏4
i=1(1 − s/sri)

, (5)

with |sr1| ' |sr2| = 2π100Hz, and |sr3| = 2π2000Hz,
|sr4| = 2π4000Hz. This is a 6 parameters spectral model
(F0, Ug0 with four poles), 2 parameters being fixed ( sr3
and sr4). According to Fant, sr1 and sr2 account for the
variability with regard to speaker and stress.

This simple form has had great success, because it has
been used for deriving the linear prediction equations (see,
for instance [20]). In this latter case, only two poles are
used, because the linearity of this acoustic model only
holds for frequencies below about 4000 Hz. Such a sim-
ple filter depends on only 3 parameters: a gain factor
Ug0, the fundamental frequency F0, and a frequency pa-
rameter sr1 ' sr2. This spectrum has an asymptotic be-
haviour in −12 dB/oct when the frequency tends towards
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Figure 6. Spectra of the 4 GFM derivatives of Figure 3. The log-
frequency scale allows the asymptotes to be more clearly seen.

infinity. The parameter sr1 controls the cut-off frequency
β of the spectrum. When the frequency tends towards 0,
|Ug (0)| ∼ Ug0 and when the frequency tends towards in-
finity |Ug (f )| ∼ Ug0β

2/f2 where β = sr1/2π. Therefore
the spectral tilt is null for frequencies below β, and is of
−12 dB/oct for frequencies above β.

This cut-off frequency β remains the same whether it
is computed using the GFM or its derivative. This is im-
portant because the speech sound is a pressure signal in
which the effect of the flow is manifested by its derivative,
due to the lip radiation effect. The asymptotic lines have
+6 dB/oct and−6 dB/oct slopes for the derivative (because
of the factor f in the spectrum). The spectral character-
istics of the glottal pulse are those of a second-order fil-
ter frequency-response, showing a spectral peak near the
asymptotic lines crossing point which is then called the
glottal formant. This glottal formant is generally notice-
able on spectrograms, especially for male voices. It is
sometimes referred to as the “voicing bar” in spectrogram
reading.

3.2. Spectrum of the generic glottal flow model

The spectrum of the general form of any GFM presented
above also corresponds to a low-pass system frequency re-
sponse, as shown in Figure 6 and 7. In the case of abrupt
closure, taking the Fourier transform of equations (2) and
(4) gives the spectra ˜Ug and ˜U ′g of the GFM and its deriva-
tive:

˜Ug (f ;P ) = E(OqT0)2ñg (fOqT0; αm)
(

F0⊥⊥⊥F0 (f )
)

, (6)

7



ACTA ACUSTICA UNITED WITH ACUSTICA Doval et al: The spectrum of glottal flow models
Vol. 92 (2006)

Rosenberg C

Klatt / R++

LF

frequency (Hz)

P
h

a
s
e

6000500040003000200010000

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Rosenberg C

Klatt / R++

LF

frequency (Hz)

G
r
o
u

p
d
e
l
a
y

(
m

s
)

6000500040003000200010000

1

0.5

0

-0.5

-1

-1.5

-2

Figure 7. Phase spectra and group delay of the 4 GFM deriva-
tives of Figure 3. Above the glottal formant frequency, the phase
is almost constant. The oscillations on the phase and the group
delay are due to the finite duration of the GFM. At the frequency
of the glottal formant the group delay is negative, which shows
that this maximum is anticausal.

˜U ′g (f ;P ) = EOqT0ñg′ (fOqT0; αm)
(

F0⊥⊥⊥F0 (f )
)

, (7)

where ⊥⊥⊥F0 (f ) is a Dirac comb with fundamental fre-
quency F0 = 1/T0, and ñg and ñg′ are the Fourier trans-
forms of ng and ng′ respectively. It must be emphasized that
ñg and ñg′ depend only on αm in these equations. Therefore
the spectral effect of parameters E, T0 and Oq can be stud-
ied independently of any particular model: they will have
the same effect whichever the GFM.

According to equation (7), ˜U ′g is derived from ñg′ by the
following operations: a frequency scaling by OqT0, an am-
plitude scaling by EOqT0 and a sampling of this result-
ing continuous spectrum, which is the harmonic envelope,
with a sampling rate of F0 to obtain the harmonics. Note
that the periodic repetition by T0 results in a sampling
of the spectrum by F0 but introduces also an amplitude
change of F0 because the Fourier transform of ⊥⊥⊥T0 (t) is
F0⊥⊥⊥F0 (f ).

The influence of the different parameters on ˜U ′g (f ;P )
can be deduced from equations (6) and (7):
• E has the effect of an overall gain.
• T0 allows the whole spectrum to stretch or shrink, the

harmonic amplitudes and phases being unchanged.
• Oq has the same type of effect as T0 but it stretches

or shrinks only the spectral envelope, without changing
the harmonic frequencies.

• the effect of αm depends on the specific generic model
used. This will be discussed below.

The effect of the return phase quotient is considered in
paragraph 3.4. The spectra of the generic form of glottal
flow models are derived in Appendix A2, where analytic
expressions for the Laplace transform for each of the four
models considered here are elaborated.

3.3. Glottal formant

The first definition of the glottal formant is due to Fant
[13]: “The glottal pulse frequency Fg is defined as the in-
verse of twice the duration of the rising branch”: Fg =
1/2Tp. This definition has the advantage of simplicity but,
paradoxically, is a time domain definition which represents
a spectral feature of only one part of the glottal pulse and
does not define the glottal formant amplitude. We adopt
a sligthly different definition, starting from a frequency
domain point of view: in this paper, the glottal formant
is defined as the maximum of the glottal flow derivative
spectrum. It is to be noticed that both definitions coincide
if they are applied on the LF model with abrupt closure
but with a non-truncated open phase towards the negative
times. It has been shown that the truncation of the damped
sinusoid in the LF model shifts the frequency of the max-
imum slightly upward [21]. This is consistent with Fant’s
observation that “the sinusoidal residue of the glottal pulse
(. . . ) appears in the spectrum as a "baseband" formant at
or somewhat above Fg” [13].

Applying the same procedure as in paragraph 3.1 to the
preceding equations, it can be shown that the GFM spec-
trum in its generic form actually behaves as a low-pass fil-
ter frequency response. The glottal-formant frequency and
amplitude can then be deduced.

When the frequency tends towards 0, the GFM spectrum
tends towards a constant which corresponds to the GFM
integral I . Since GFM waveforms are always positive, this
constant is non-null. The spectrum at frequency 0 is then
given by:

˜Ug (0;P ) = I (8)

When the frequency tends to infinity, the asymptotic prop-
erties of the spectra are linked to the discontinuity in the
derivative of the GFM at the glottal closing instant. It can
be shown that if there are no other discontinuities in the
GFM derivative than the E gap at GCI (in particular if
there is no gap at opening time), then the GFM spectrum
behaves at infinity as a 1/f2 (i.e. −12 dB/oct) slope with
amplitude E

|˜Ug (f ;P )| f→+∞∼
E

(2πf )2
(9)

Then, the asymptote (i.e. the behaviour of the spectra for
high frequencies) does not depend on T0, Oq nor even on
αm. Therefore it is independent of the particular model
used.E is the only parameter that controls the medium and
high frequency spectral behaviour of a GFM with abrupt
closure.
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Consider also the GFM derivative. The GFM derivative
spectrum is the product of the GFM spectrum by j2πf .
This product transforms the slopes of the asymptotic lines
as follows. The spectrum is equivalent to I2πf when
the frequency tends towards 0, and therefore the slope is
+6 dB/oct. The spectrum is equivalent to E/2πf when the
frequency tends towards infinity, and therefore the slope is
−6 dB/oct.

Thus the spectrum of the GFM derivative behaves like
a bandpass filter frequency response. Figure 8 shows the
spectral magnitude envelope (amplitude gain) of such a
filter. The spectral peak of this filter can be characterized
by its peak frequency (corresponding to the cut-off fre-
quency of the GFM spectrum) Fg and its peak amplitude
Ag defined by the crossing point between the two asymp-
totic lines

Fg =
1

2π

√

E

I
, (10)

Ag =
√

EI. (11)

Equation (10) shows that the spectral peak frequency is
determined by the amplitude of the derivative discontinu-
ity, over the GFM integral. In other words, this frequency
depends on the speed of closure of the vocal folds over the
total glottal flow. Consider now how Fg and Ag are related
to the time-domain generic parameters.

For that, the spectrum of the generic model derivative ñg′
must be considered. This spectrum shows the same type
of asymptotic behaviour (−6 dB/oct, +6 dB/oct), with a
crossing point defined by a frequency fg (αm) and an am-
plitude ag (αm) that can be explicitly calculated from the
expression of n′g . All the equations have been reported in
Appendix A2 for the sake of clarity of the main text.

Using equations (10), (11) and (3), it can be deduced
that

Fg =
1

OqT0

1

2π
√

in(αm)
=
fg (αm)
OqT0

=
fg (αm)F0

Oq
, (12)

Ag = EOqT0

√

in(αm) = EOqT0ag (αm). (13)

However what we are interested in is the glottal formant,
which is defined as the maximum of the GFM derivative
spectrum (see Figure 8). It must be pointed out that, as for
the second-order linear filter, the actual spectrum maxi-
mum is not exactly at the frequency position of the asymp-
tote crossing point. The true maximum is not found at fre-
quency Fg but at a slightly higher frequency depending on
the specific equation of the generic model and thus on the
asymmetry coefficient. Using equation (7), the frequency
Fmax and amplitude Amax of the glottal formant can be
written as a function of the frequency fmax(αm) and the
amplitude amax(αm) of the maximum of ñg′ as

Fmax = arg max
f

˜U ′g (f ;P ) =
1

OqT0
arg max

f
ñg′ (f ; αm)

=
1

OqT0
fmax(αm), (14)
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This gives raise to the “glottal formant” the frequency of which
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and Amax is a way to characterize the glottal formant bandwidth.

Amax = max
f

˜U ′g (f ;P ) = EOqT0 max
f
ñg′ (f ; αm)

= EOqT0amax(αm). (15)

These equations show that Fmax and Amax are influenced
byOq or T0 in exactly the same way as Fg andAg . But con-
trary to the asymptote crossing point, for which analytical
expressions are available, the maximum of the derivative
spectrum can not be analytically and explicitly related to
αm, at least for the 4 studied models. Although explicit ex-
pressions for fmax(αm) and amax(αm) have not been found,
they would still be of interest because fmax and amax are
functions of only one parameter which can be easily com-
puted by a numerical algorithm.

The influence of the asymmetry coefficient αm can be
studied using the preceding equations. The difference be-
tween the stylized spectral envelope defined by the two
asymptotic lines and the actual spectral envelope is mainly
due to the bandwidth of the glottal spectral peak. This
bandwidth can be modelled by a quality coefficient Qg

which measures the difference in dB between Amax and
Ag , in a way that is analogous to second-order linear fil-
ters. Substituting these values by their expression given by
equations (13) and (15) gives

Qg =
Amax
Ag

=
amax(αm)
ag (αm)

= qg (αm), (16)

showing that this coefficient is independent of E, T0 and
Oq , and that it is only related to the asymmetry coefficient
αm. Figure 14 represents the spectral changes correspond-
ing to several values of αm for the LF GFM , and Figure 9
shows the function qg (αm) for the 4 studied GFMs.

Returning to Fant’s original spectral model (1960), it is
interesting to note that it also showed a glottal formant at
a frequency that can be controlled by the position of the
poles sr1 and sr2 but with a constant bandwidth. This can
be compared with the more recent GFMs which control
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the glottal formant bandwidth through the asymmetry co-
efficient.

Finally, one must remember that the actual source spec-
trum is a harmonic spectrum, whose spectral envelope is
defined by the spectrum of one GFM pulse. This fact is
illustrated in Figure 10.

3.4. Spectral tilt

In the preceding paragraphs, only the abrupt closure case
has been considered. Here we consider GFMs with smooth
closure (Qa 6= 0). The spectral effect of the GCI time-
domain smoothing is mainly an attenuation of the high
frequencies as noted by Fant et al. (1985, p. 8): “Even
a very small departure from abrupt termination causes
a significant spectrum roll-off in addition to the stan-
dard −12 dB/oct glottal flow spectrum”. This large spec-
tral change for small parametric variation can be explained
by the change in nature of the wave (differentiable ver-
sus non-differentiable). The term spectral tilt is very often
used to designate this spectrum roll-off.

Historically, in the early spectral model of [1], two fixed
poles sr3 and sr4 were attenuating high frequencies of the
voice source. Then, in the Rosenberg time-domain models
[3], there was no longer any high-frequency attenuation.
But Fant [2], Klatt [4], Veldhuis [5] and others reintro-
duced the spectral tilt parameter either in the time domain
or in the frequency domain. This is because this parameter
is of the utmost importance for voice quality. According to
[22], the spectral tilt component is one of the main spectral
cues for prosodic stress perception.

For GFMs with smooth closure, it has been seen in para-
graph 2.1 that two methods were used: either the return
phase method or the low-pass filter method. In the low-
pass filter method, the smooth closure GFM spectrum is
obtained from the abrupt closure GFM spectrum by multi-
plying it by the transfer function of a first or second order
filter. For a first order filter, this is given by

LPF (s) =
1

1 + s
2πFc

(17)

where Fc is the cut-off frequency of the filter. The im-
pulse response of this filter is a decreasing exponential
with time constant Tc given by Tc = 1/(2πFc). As has
been stated before, this time constant is very similar to
the return phase parameter Ta and can be used as an ap-
proximation of it. But this filter is more often specified by
the attenuation TL (in dB) at a given medium frequency
(for instance 3000Hz for the KLGLOTT88 model). Then,
from the equations above, TL can be related to Ta by:
Ta =

√

10TL/10 − 1/(2π3000). The main advantage of the
low-pass filter method is that the low frequency spectral
features, especially the glottal formant, are kept constant
or only slightly changed in a predictable way.

In the return phase method, according to [2], the main
spectral effect of the return phase is an additional low-pass
filtering with a cut-off frequency given by:

Fc ' Fa =
1

2πTa
(18)
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This approximation can be compared with the above ap-
proximation Ta ' Tc for the low-pass filter method. For
the LF model, a more precise approximation can be ob-
tained by using the equation [23]: Fc = Fa + a/(2π) +
RgF0cot(π(1 + Rk)). But the main drawback of the re-
turn phase method with a constrained baseline is that it
also changes the low frequencies. This is due to the time-
domain modification of the open phase implied by the ad-
ditional return phase.

Thus, for any abrupt closure GFM, both smoothing
methods can be used and have the same type of effect
in time and frequency. The usual parameters (Ta or TL)
can be related to the return phase quotient by the above
equations. Figure 13 shows the effect of the spectral tilt
component in the GFM spectrum. The right side of glottal
formant is modified by an additional −6 dB/oct, after a fre-
quency point defined by Fc. The spectral tilt factor can be
−6 dB/oct or more depending on the corresponding order
of the spectral tilt filter.

3.5. Phase spectrum

More and more attention is paid nowadays to the phase
characteristics of the source and its usage for inverse fil-
tering [24] or speech coding. The source phase has been
shown to contain information on the source parameters,
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and especially those related to voice quality. Some insight
is then needed into the structure of GFM phase spectra.

There is some evidence that part of the phase spec-
trum exhibits some anticausal behaviour [25, 23]. This an-
ticausal behaviour can be related in the time domain to
the right skewness of the open phase. Returning to the
second order filter analogy, the open phase looks like the
impulse response of an anticausal second order filter. In
the frequency domain, the anticausality cannot be viewed
on the magnitude spectrum because both versions (causal
and anticausal) have the same magnitude spectrum. But
the GFM phase spectrum exhibits increasing values from
low to middle frequencies in the region corresponding to
the glottal formant. This can also be observed on the group
delay where the delay becomes negative around the glot-
tal formant frequency (see Figure 7). However the return
phase part of the GFM exhibits a decreasing phase spec-
trum and a positive group delay around the cut-off fre-
quency.

Finally, the open phase of the GFM is anticausal while
the return phase is causal, resulting in a “mixed phase”
model [26, 21]. This anticausality property can be used for
inverse filtering purposes to estimate the open phase from

speech signals or to estimate the frequency of the glottal
formant [27].

3.6. Glottal spectral parameters

In summary, the spectral envelope of glottal flow models
can be considered as the gain of a lowpass filter. The spec-
tral envelope of the GFM derivative can then be consid-
ered as the gain of a bandpass filter. Linear stylization of
the spectrum in a log-log representation is presented in
Figure 11. The spectrum of any GFM derivative can be
stylized by 3 linear segments with +6 dB/oct, −6 dB/oct
and−12 dB/oct (or sometimes−18 dB/oct) slopes, respec-
tively. The 2 breakpoints correspond to the glottal formant
frequency and the spectral tilt cut-off frequency. Their fre-
quency and amplitude are Fg , Ag , Fc, Ac. The amplitude
Ac can be deduced from Fg , Ag and Fc.

At this point, the idea of describing a GFM by spectral
parameters should be considered. A set of such parameters
could then be: the fundamental frequency F0, the ampli-
tude Ag and frequency Fg of the first breakpoint, the qual-
ity coefficient Qg of the glottal formant, and the frequency
Fc of the spectral tilt breakpoint. The advantage of this set
is that there are exact formulae to relate those parameters
to the time-domain generic parameters. The drawback is
that it is not easy to estimate or even to observe the break-
points on the source spectrum. Another set would then be
obtained by replacing Ag and Fg by the amplitude Amax
and frequency Fmax of the glottal formant. These parame-
ters are easier to estimate but are not analytically related to
the time-domain parameters. However, as has been stated,
numerical algorithms can be used to obtain them from the
equations. Finally, the parameter E could be used in place
of Ag or Amax since it has a clear spectral role (it defines
the position of the second line in the stylization).

In the remainder of the paper, the results obtained in this
section are used for studying the spectral correlates of the
time-domain parameters.

4. Spectral correlates of time-domain pa-
rameters

In this section, the role played by time-domain parame-
ters and their spectral consequences are discussed in detail,
with emphasis on the low-frequency part of the spectrum
related to the glottal formant. Further, the relationship be-
tween open quotient and the first two-harmonics amplitude
difference is revisited here, as this amplitude is often used
in the literature to estimate the open quotient.

4.1. Spectral correlates of amplitude and return
phase quotient

The amplitude E of the negative peak of the glottal flow
derivative, also called maximum excitation, is the GFM
amplitude parameter in the time domain. The amplitude
of voicing Av is an alternative amplitude parameter (see
Figure 13 and sound example 6). Both parameters behave
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Figure 13. Correlates of E / Av (left) and Qa (right) on the GFM and the GFM derivative spectra (LF model). E or Av plays the role of
a gain. Qa controls the spectral tilt and modifies slightly the low-frequency region (Av being fixed).

as a gain factor in the glottal flow or glottal flow deriva-
tive spectra. All the equations can be written using E or
Av . As shown above, E controls the −6 dB/oct part of the
spectrum, which resides between the position of the glot-
tal formant and the spectral-tilt cut-off frequency point.
This encompasses the mid frequency harmonics and also,
depending on the other parameters, the low and/or high
frequency harmonics. This could explain the high correla-
tion between E and the SPL found in many studies such
as [28, 29, 30]. For that matter, when the other parame-

ters are varied, keeping E or Av constant is not equivalent.
When considering the effect of an open quotient variation,
it is important to specify which amplitude parameter is
kept constant. For instance, the just noticeable differences
(JND) of Oq variations measured when E is kept constant
are approximately twice the ones measured when Av is
kept constant [31]. This can be heard by comparing sound
examples 9 and 11.

Spectral correlates of the return phase quotient are
shown in Figure 13 and sound example 7. Its main effect
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a

a

a

Figure 14. Correlates of αm (left) and Oq (right) on the GFM and the GFM derivative spectra, E being fixed (LF model). Oq and αm
mainly affect the low-frequency region of the spectrum, More precisely αm controls the glottal formant bandwidth and Oq its frequency.
Note that the variation of the spectrum maximum magnitude (Amax) is a consequence of the concomitant variation in Av .

is to introduce an additional spectral tilt above the cut-off
frequency. This spectral turning point can easily be com-
puted (see section 3.4). The return phase quotient can also
influence slightly the centre frequency and bandwidth of
the glottal formant, but this seems to be only a second or-
der effect. In the return-phase implementation of the spec-
tral tilt, the return phase takes place between OqT0 and T0.
This implies that Oq must be strictly lower than 1 and that
the return phase quotient must be bounded by 1. There-

fore the cut-off frequency is lower-bounded by the value
corresponding to Qa = 1. This lower bound depends on
the particular GFM. When Qa is high (near 1) the cut-off
frequency is low and the spectral tilt is high, leading to the
high frequency attenuation observed in soft voices. In con-
trast, when Qa is low, the cut-off frequency is high and the
spectral tilt is low, this case corresponding to loud voices.
There is no upper bound for the cut-off frequency sinceQa

can be as low as required and can even be null, in which

13
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Figure 15. Correlates of Oq and αm on the GFM and the GFM derivative spectra, Av being fixed (LF model). When E is not fixed, a
variation of Oq or αm can change the medium and high frequency regions.

case the closure is abrupt, the cut-off tends towards infinity
and there is no additional attenuation in the spectrum.

4.2. Effect of Oq and αm on the glottal formant

The influence of αm and Oq on the glottal formant is rep-
resented in Figure 14, where LF GFM spectra are plotted
for 4 values of αm and 4 values of Oq , in the abrupt closure
case (Qa = 0) and while E is kept constant. This figure

shows that the main effect is indeed in the low frequency
region and that the mid and high frequencies are not much
modified by αm and Oq variations. This point will now be
discussed in more detail.

First, as can be seen in equations (12) and (14), the
asymptote crossing frequency Fg and the glottal formant
maximum frequency Fmax are proportional to F0. It is thus
more interesting to study its position relative to the har-
monics rather than to give absolute values.

14
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Figure 16. Glottal formant frequency: Fmax/F0 in function of αm
for different values of Oq and different models. Note that it is
almost independent of αm (with small variations along models)
but is inversely proportional to Oq (see equation 14).
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Figure 17. Glottal formant magnitude: Amax/E in function of αm
for different values of Oq and different models. Note that it de-
creases with αm (with variations along models) and is propor-
tional to Oq (see equation 15).

Thus, Figure 16 shows the variation of Fmax/F0 as
a function of αm and Oq , for standard values (αm =
0.6, . . . , 0.8, Oq = 0.25, . . . , 1.0) and for the four GFM.
As can be seen, this ratio is only slightly affected by a
change of αm, but is inversely proportional toOq , as shown
in equation 14.

The values of Fmax/F0 range from 0.74 to 3.8 and this
extent shows very small variations from one model to an-
other: for Oq values ranging from 0.25 to 1.0 and αm val-
ues from 0.6 to 0.8 (but following the limitations of each
model), this ratio shows a range of [0.76, 3.0] for Klatt,
[0.74, 3.5] for R++, [0.77, 3.1] for C, and [0.78, 3.8] for
LF. These bounds indicate that the GFM derivative spec-
trum reaches its maximum roughly between the first and
the fourth harmonics. The lower bound is a theoretical
bound due to the fact that Oq cannot be greater than 1.
There is no theoretical upper bound and the given upper
bound is fixed by the lowest considered value of Oq and,
to a lesser extent, by the highest considered value of αm.
Notice that Fant’s original definition of the glottal formant
frequency follows the same behaviour: it is proportional to
F0, lower bounded (by F0/2) and not upper bounded.

In Figure 17 the relative magnitudeAmax/E of the spec-
tral maximum for each model is plotted with respect to αm

and Oq for the same standard values as mentioned above
and with a reference value of T0 = 1. As can be seen in
this Figure, the maximum magnitude is proportional to Oq
as given by equation (15), and then increases by 6 dB each
time Oq is multiplied by 2, given that E is constant. We
observe in this case a variation of 12 dB for an Oq range
of [0.25, 1.0]. The maximum magnitude is also greatly in-
fluenced by αm: a variation of −12.2 dB is observed for the
LF model when αm moves from 0.6 to 0.8. This variation is
even greater for extreme values of αm, i.e. αm > 0.8. This
influence is model-dependent and smaller for the R++
model (−6.7 dB for αm = 0.6 to 0.75) and the C model
(−6.4 dB for αm = 0.6 to 0.8).

Reconsidering the second-order filter analogy for the
glottal formant, the influence of αm should be compared
to that of a quality factor which controls the bandwidth,
or equivalently the difference between the maximum and
the asymptote crossing point amplitudes. This is clearly
shown in Figure 14: αm seems to play the role of the
glottal-formant bandwidth while Oq controls its position.

Following [4], when the open quotient decreases, the
voice quality changes from a lax to a pressed voice. From
the observations presented above, we can say that in this
case the glottal formant moves from a low towards a mid
frequency, while attenuating mainly the first-harmonics
amplitude, the higher harmonics being hardly changed
(sound example 9). The voice quality modification due to
the asymmetry coefficient (or equivalently the speed quo-
tient) is rarely described in the literature. From the obser-
vations presented above, we can say that it mainly affects
the relative amplitude of the first harmonics, having a sim-
ilar effect to the open quotient on the tense-lax axis (sound
example 8).

In that direction, Alku et al. [32] proposed the parame-
ter NAQ defined by the T0-normalized ratio between Av
and E as a way to parametrize the glottal closing phase.
Equation 3 shows that for GFMs this parameter can be
directly related to Oq and αm: NAQ = av (αm)Oq . Since
av (αm) is a decreasing function of αm (see Appendix A2
for formula), NAQ increases with Oq and decreases with
αm (Figure 12). This could explain why it is considered to
capture the relative degree of tenseness/laxness.

The major difference between αm andOq spectral effects
is that αm can be used to boost the harmonics in the vicinity
of the glottal formant. For instance, in Figure 14, the first
harmonic is boosted by 12 dB when αm goes from 0.8 to
0.6. Conversely, for αm values greater than 0.8, the effect
of an αm variation is very similar to that of an Oq variation.
When αm > 0.9, it can even be simulated by a variation of
Oq .

Figure 15 shows the spectral influence of Oq and αm
while Av is kept constant (instead of E). As can be seen,
this influence is a combination of the low frequency effect
described above and the overall magnitude change due to
the variations of E, which can be seen on the high fre-
quency asymptote (sound examples 10 and 11).

For the low-pass filter implementation of the spectral
tilt, its influence on the glottal-formant maximum fre-
quency is negligible and its influence on the maximum
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magnitude is to add an extra 0 to −3 dB amplitude if we
consider that the cut-off frequency is always greater than
Fmax. But for the return phase case it seems that, in some
particular cases, the influence is greater and cannot be con-
sidered as negligible. This happens especially when the re-
turn phase quotient is high (near 1) and the open quotient
low: in this case the large area under the return phase in the
GFM-derivative waveform is compensated for by a modi-
fication of the waveform before the GCI, and this leads to
some changes in the spectrum around the glottal-formant
frequency. However this particular case is hardly seen in
real speech or singing as it corresponds to a very soft voice
(Qa is high) which is also pressed (Oq is low).

4.3. First two harmonic amplitudes vs. Oq and αm

In many studies [33, 7, 34, 34, 35], the spectral amplitude
difference between the first two harmonics is assumed to
be strongly correlated to the open quotient. It is often used
as a spectral measure of the open quotient. In this part, we
shall discuss this assumption, on the basis of the theoret-
ical framework presented above. Let H1 −H2 denote the
difference between the first two harmonic amplitudes (in
dB), as measured on the glottal flow derivative spectrum.
These spectral differences can be measured either in the
inverse-filtered voiced signal or in the voiced signal itself
by using a formant-based correction according to [7, 34].

In the case of abrupt closure, Fant [15] found a very
good correlation between H1 −H2 and Oq , using the LF
model. This correlation is almost perfectly linear accord-
ing to the equation:

H1 −H2 = −6 + 0.27 ∗ e5.5Oq (19)

Then, according to this equation, H1 −H2 depends on the
open quotient alone. However, when one computes har-
monic amplitudes according to equation (7), one obtains:

H1 −H2 = 20 log10

∣

∣

∣

˜U ′g (F0;P )
∣

∣

∣

− 20 log10

∣

∣

∣

˜U ′g (2F0;P )
∣

∣

∣

= 20 log10

∣

∣

∣

∣

ñg′ (Oq; αm)

ñg′ (2Oq; αm)

∣

∣

∣

∣

. (20)

This equation shows that H1 −H2 does not depend on the
fundamental frequency or the amplitude parameter but on
both the open quotient and the asymmetry coefficient.

While studying glottal characteristics in case of male
[36] and female speakers [7, 34], Hanson estimated Oq
with measurements of H1 −H2. Her work is based on the
KLGLOTT88 model. In this model, the asymmetry coef-
ficient is of constant value αm = 2/3. Therefore, there is a
direct relationship between Oq and H1 −H2, as illustrated
in Figure 18. A unique value of H1 − H2 corresponds to
a given value of Oq , at least considering only values of
Oq ≤ 0.74. Without this hypothesis, for H1 −H2 between
7.94 and 9.82, two values of Oq give the same harmonic
differences.

a

a

Figure 18. H1 − H2 in function of Oq for the Klatt model and
for several values of αm for the LF model. The Fant’s empirical
relation between H1 − H2 and Oq (see equation 19) has been
superimposed.

Contrary to the KLGLOTT88 model, the asymmetry
coefficient can be varied in the LF, R++ or Rosenberg
C models. Thus, harmonic differences depend on both
the open quotient and the asymmetry coefficient for those
models. In Figure 18, H1 −H2 is plotted as a function of
the open quotient for different values of asymmetry coef-
ficient, ranging from αm = 2/3 to αm = 0.9 with steps
of 0.01. A given value of H1 − H2 does not correspond
to an unique value of open quotient, but to an open quo-
tient interval as a function of the αm. For instance, Han-
son [34] found an average value of 3.4 dB for H1 − H2

(mean value over 22 female speakers, vowel /æ/). For this
average value, the possible open quotient values range be-
tween 0.66 and 1.0 and the possible asymmetry coefficient
values between 2/3 and 0.81. Several couples of parame-
ters, e.g. (Oq = 0.66, αm = 2/3), (Oq = 0.80, αm = 0.77)
or (Oq = 1.0, αm = 0.81) would give a same value for
H1 −H2 according to the LF model.

These figures show that for one value ofH1−H2, many
possible couples of (Oq , αm) exist. And there is no way
to decide which values are correct, given only one spec-
tral measure. Note that it may also be necessary to take
into account the effect of the return phase, in the case of
smooth closure (higher spectral tilt). It seems that the pa-
rameter Qa has indeed an effect on the measure H1 −H2,
but that this effect is much less important than the effect of
the open quotient and asymmetry coefficient, and can thus
be neglected.

5. Conclusion

The aim of this paper is to study the spectrum of glot-
tal flow models (GFM). For this, a unified framework
has been established to easily derive analytical formulae
for the spectra derived from four widely used GFMs (LF,
Klatt, R++ and Rosenberg C).
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First, it has been shown that the GFMs can be described
by a common set of 5 time-domain parameters: the funda-
mental period, the maximum excitation, the open quotient,
the asymmetry coefficient and the return phase coefficient.
All the GFMs are equivalent with regard to the first 3 pa-
rameters but the last 2 parameters are model specific, even
if they produce very similar effects among the models.

Also, the spectra from all GFMs have been shown to be
equivalent to that of a low-pass filter. More precisely, the
spectra from the GFM derivatives exhibits a spectral peak
at low frequency that is called the glottal formant and an
additional attenuation at medium or high frequency cor-
responding to the spectral tilt. The structure of the glot-
tal formant has been shown to be that of a second order
anticausal resonant filter with an overall stylized shape
of +6 dB/oct then −6 dB/oct. Analytical expressions for
the glottal formant frequency and amplitude have been
given as a function of time-domain parameters. They show
that the glottal formant frequency is mainly controlled by
the open quotient while its amplitude (or equivalently its
bandwidth) is mainly controlled by the asymmetry coeffi-
cient. For standard values of time-domain parameters, the
glottal formant roughly takes place between the first and
the fourth harmonic. Moreover, the −6 dB/oct part of the
spectrum is uniquely controlled by the maximum excita-
tion, which can explain the high correlation between this
parameter and the SPL shown by [30]. The spectral tilt part
of the spectrum behaves like a first (or second) low-pass
filter which results in a −12 dB/oct (or −18 dB/oct) slope
in the GFM derivative spectrum. The cut-off frequency of
this filter is mainly related to the return phase coefficient.

As a direct application, the relationship between the dif-
ference of the two first harmonic amplitudes and the open
quotient has been explored and this difference has been
shown to be also dependent on the asymmetry coefficient.

Many other applications could benefit from these the-
oretical results. First, since the glottal formant and spec-
tral tilt parameters have been shown to be equivalent to
the time-domain parameters, they can be used to control
a spectrally defined GFM [21]. Another application is the
spectral estimation of glottal flow parameters [37, 38] that
would also take into account the phase information (which
has been shown to be important [39, 25]). This would help
for voice quality analysis [34, 22]. Finally, spectral domain
modification of the voice source [40] could also be devel-
oped. However, the extent to which modifications based
only on linear filtering would be sufficient, remains to be
tested in more detail.

Appendix

A1. Generic model for four glottal flow
models

In this appendix, four classical GFMs are reviewed. For
each model, the relationship between the original model
parameters and the generic parameters is given.

A1.1. KLGLOTT88 model

This model derived from the Rosenberg B [3] model has
been used in the Klatt synthesizer [4], and in several stud-
ies (e.g. [7, 34]).

The glottal waveform Ug [4] is characterized by four
parameters: the fundamental frequency F0 = 1/T0, the
amplitude of voicing AV , the open quotient Oq , and the
attenuation of a spectral tilt filter TL. When the parameter
TL is set to 0 dB, the KLGLOTT88 model is identical to
the Rosenberg B model. In this case, the equation of the
model and its derivative are:

UgTL=0 (t) =
{

at2 − bt3 0 ≤ t ≤ OqT0,
0 OqT0 ≤ t ≤ T0,

with a = 27
4

AV

O2
qT0

, b = 27
4

AV

O3
qT

2
0

,

U
′

gTL=0
(t) =

{

2at − 3bt2 0 ≤ t ≤ OqT0,
0 OqT0 ≤ t ≤ T0.

The generic parameters are: T0, Oq , αm = 2/3 and E =
−U ′

gTL=0
(OqT0) = 27AV/4Oq . The generic GFM is then

obtained by taking: T0 = 1, Oq = 1 and A = 4/27.
When TL 6= 0, UgTL=0 (t) is filtered by a first or second-

order low-pass filter, such as the attenuation at 3000Hz
equals TL dB. A side effect of the low-pass filter is to shift
in time the maximum of the model. However the GCI itself
is not shifted by a first order filter.

A1.2. R++ model

Veldhuis [5] recently revisited the Rosenberg B model,
and proposed the so-called R++ model. This model is im-
proved along to axes an asymmetry coefficient and a return
phase parameter.

The model proposed by [5] is defined using 5 parame-
ters:
• K: amplitude coefficient.
• T0: fundamental period.
• Te: minimum of the glottal flow derivative waveform

(excitation instant).
• Tp: maximum of the glottal flow waveform.
• Ta: time constant for the return phase.
The glottal flow derivative model contains a 3rd order
polynomial part (between time 0 and Te), followed by an
exponential return phase (between Te and T0):

U ′g (t) =
{

4Kt(Tp − t)(Tx − t) 0 ≤ t ≤ Te,
U ′g (Te) e−(t−Te )/Ta−e−(T0−Te )/Ta

1−e−(T0−Te )/Ta Te < t ≤ T0.

In this equation, parameter Tx is computed as:

Tx = Te

(

1 −
1
2T

2
e − TeTp

2T 2
e −3TeTp + 6Ta(Te−Tp)D(T0, Te, Ta)

)

,

with

D(T0, Te, Ta) = 1 −
(T0 − Te)/Ta
e(T0−Te)/Ta − 1
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The meaning of parameter Tx is as follows. The GFM must
fulfil some conditions: 1. the waveform is null for t = 0;
2. the derivative of the GFM is null for t = 0; 3. the maxi-
mum of GFM is for t = Tp; 4. the derivative is continuous
for t = Te; 5. the GFM is null for t = T0. Conditions 2., 3.
and 4. are satisfied by the definition of U ′g (t). But condi-
tions 1. and 5. are involving that the integral of the model
derivative between 0 and T0 is null. This condition gives
an equation which in turn defines Tx.

The R++ GFM is obtained by integrating its derivative:

Ug (t) =























Kt2
(

t2 − 4
3 t
(

Tp + Tx
)

+ 2TpTx
)

0 ≤ t ≤ Te,
Ug (Te) + TaU ′g (Te)

· 1−e−(t−Te )/Ta−((t−Te)/Ta)e−(T0−Te )/Ta

1−e−(T0−Te )/Ta

Te ≤ t ≤ T0.

The maximum excitation is given by:U ′g (Te) = 4KTe(Tp−
Te)(Tx − Te). If Ta = 0, then Tx reduces to: Tx = Te(3Te −
4Tp)/2(2Te − 3Tp). The parameter E is then equal to
E = −U ′g (Te) = 2KT 2

e (Te−Tp)(2Tp−Te)/(2Te−3Tp). The
other generic parameters are T0, Oq = Te/T0, αm = Tp/Te.
Then the generic model and its derivative are obtained tak-
ing T0 = 1, Te = 1, Tp = αm, and K = (2−3αm)/[2(2αm−
1)(1 − αm)].

A1.3. Rosenberg-C

The Rosenberg C [3] model is a trigonometric model, de-
fined using 4 parameters:
• A: amplitude.
• T0: fundamental period.
• Tp: maximum of the glottal flow waveform.
• Tn: time interval between maximum of the glottal flow

waveform and the GCI (thus Tp + Tn is the GCI).
The model is made of two sinusoidal parts:

Ug (t) =







A
2 (1 − cos(π t

Tp
)) 0 ≤ t ≤ Tp

Acos( π2
t−Tp
Tn

) Tp ≤ t ≤ Tp + Tn
0 Tp + Tn ≤ t ≤ T0

the glottal flow derivative is:

U ′g (t) =







πA
2Tp

(sin(π t
Tp

)) 0 ≤ t ≤ Tp
− πA

2Tn
sin( π2

t−Tp
Tn

) Tp ≤ t ≤ Tp + Tn
0 Tp + Tn ≤ t ≤ T0

The generic parameters are obtained from the original pa-
rameters as: Oq = (Tp + Tn)/T0, αm = Tp/(Tp + Tn) and
E = πA/2Tn. The generic GFM is then obtained by tak-
ing: T0 = 1, Tp = αm, Tn = 1 − αm and A = 2/π (1 − αm).

A1.4. LF model

The LF model [2] represents the glottal flow derivative. Its
5 parameters are defined in the time domain:

• Ee: amplitude at the minimum of the glottal flow deriva-
tive (maximum of excitation).

• T0: fundamental period.
• Te: instant of maximum excitation.

• Tp: instant of the maximum of the glottal flow.
• Ta: time constant of the return phase.

This model is made of a sinusoidal part modulated by a
rising exponential (between 0 and Te), followed by an de-
creasing exponential return phase (between Te and T0):

U ′g (t) =

{

−Eeea(t−Te) sin(πt/Tp)
sin(πTe/Tp) 0 ≤ t ≤ Te

−Ee
εTa

(e−ε(t−Te) − e−ε(T0−Te)) Te ≤ t ≤ T0

In this equation, the parameter ε is defined by an implicit
equation:

εTa = 1 − e−ε(T0−Te)

This equation can be solved for computing ε, provided that
Ta, Te and T0 are known. The parameter a is defined by an
implicit equation:

1
a2 + ( πTp )2

(

e−aTe
π/Tp

sin(πTe/Tp)
+ a −

π

Tp
cotg(πTe/Tp)

)

=
T0 − Te

eε(T0−Te) − 1
−

1
ε

This equation can be solved for computing a, provided that
Tp, Te, T0, and ε are known.

The LF model is a model of the glottal flow derivative.
As the glottal flow must be null for t = 0 and t = T0,
the integral of the glottal flow derivative between 0 and
T0 must be null. This necessary condition explains the im-
plicit equation for a. Except for the constant factor −Ee,
the left member of the equation is the integral of U ′g (t) be-
tween 0 and Te, and the right member of the equation is
the opposite of the integral of U ′g (t) between Te and T0.

The implicit equation for ε is derived from the continu-
ity of the waveform at Te. It is also possible, by combining
the two equations, to give an expression of ε as a function
of a and the model parameters.

The open quotient is defined by:

Oq =
Te
T0

As this definition does not take into account the return
phase duration, Fant proposed the following modification:

Oq =
Te + Ta
T0

The glottal flow is obtained by integrating its derivative
U ′g (t):

Ug (t) =































−Eee−aTe
sin(πTe/Tp)

1
a2+( π

Tp
)2

(

π
Tp

+ aeatsin(πt/Tp)

− π
Tp

eatcos(πt/Tp)
)

0 ≤ t ≤ Te,
−Ee( 1

εTa
− 1)(T0 − t + 1

ε (1 − eε(T0−t)))
Te ≤ t ≤ T0.

When Ta = 0, the generic parameters are given by: T0,
Oq = Te/T0, αm = Tp/Te and E = Ee. The generic GFM
is then obtained taking T0 = 1, Te = 1, Tp = αm, and
Ee = 1.
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A2. Spectra of four glottal flow models

Let L(ng′ )(s) be the Laplace transform and ñg′ (f ) the
Fourier transform of the generic GFM derivative ng′ (t).
Both transforms always exist because all the considered
waveforms are of finite duration. Moreover, the Fourier
transform is obtained as the Laplace transform taken on
the imaginary axis: ñg′ (f ) =L(ng′ )(j2πf ).

In the following are given, for the four studied GFMs,
the analytic expressions of the corresponding generic
GFMs, their Laplace transform, their generic amplitude
of voicing, their generic total flow, and the coordinates of
their asymptote crossing point.

A2.1. KLGLOTT88 model

The generic KLGLOTT88 model and its derivative are
given by

ng (t) = (t2 − t3) (A1)

ng′ (t) = (2t − 3t2) (A2)

Then the shape factors are:

αm =
2
3
, av =

4
27
, in =

1
12
.

It is noticeable that the shape parameter αm is fixed for the
KLGLOTT88 model. This model has only 4 degrees of
freedom.

The Laplace transform of the KLGLOTT88 model is
given by

L(ng′ )(s) =
1
s

(

e−s +
2(1 + 2e−s)

s
−

6(1 − e−s)
s2

)

(A3)

and the glottal spectral peak of the generic model is:

fg =

√
3
π
, ag =

1

2
√

3
.

It must be pointed out that for this model the glottal spec-
tral peak depends only on the open quotient. This is be-
cause the shape parameter is fixed in the KLGLOTT88
model.

The spectral tilt component is a first or second order
low-pass filter, whose frequency is chosen in order to ob-
tain a given attenuation at 3 kHz.

A2.2. R++ model

The generic GFM of the R++ model is given by

ng (t; αm) =
2 − 3αm

2(1 − αm)(2αm − 1)
t2(t − 1)

·
(

t −
αm(3 − 4αm)

2 − 3αm

)

, (A4)

ng′ (t; αm) =
2 − 3αm

(1 − αm)(2αm − 1)
2t(t − αm)

·
(

t −
3 − 4αm

2(2 − 3αm)

)

. (A5)

αm is a free parameter, and the shape factors are given by:

av (αm) =
α3
m(1 − αm)

2(2αm − 1)
,

in(αm) =
−3 + 12αm − 10α2

m

60(1 − αm)(2αm − 1)
.

It must be noted that the range of αm must be restricted to
[0.5, 0.75], otherwise the GFM may be negative.

The Laplace transform of the R++ model is given by

L(ng′ )(s; αm) =
1

(1 − αm)(2αm − 1)
1
s

·
[

e−s(1 − αm)(2αm − 1) +
1
s

(

αm(3 − 4αm)

− e−s(8α2
m − 15αm + 6)

)

−
6
s2

(

1 − 2α2
m + e−s(2α2

m − 6αm + 3)
)

+
12
s3

(1 − e−s)(2 − 3αm)
]

and the glottal spectral peak of the generic model is:

fg (αm) =
1

2π

√

60(1 − αm)(2αm − 1)

−3 + 12αm − 10α2
m

,

ag (αm) =

√

−3 + 12αm − 10α2
m

60(1 − αm)(2αm − 1)
.

The spectral tilt component is computed using the return
phase method.

A2.3. Rosenberg-C model

The generic GFM of the Rosenberg C model is given by

ng (t; αm) =

∣

∣

∣

∣

∣

1−αm
π (1 − cos(π t

αm
)) 0 ≤ t ≤ αm,

2(1−αm)
π sin( π

2(1−αm) (1 − t)) αm ≤ t ≤ 1,
(A6)

ng′ (t; αm) =

∣

∣

∣

∣

( 1
αm
− 1)sin(π t

αm
) 0 ≤ t ≤ αm,

−cos( π
2(1−αm) (1 − t)) αm ≤ t ≤ 1.

(A7)

αm is a free parameter, and the shape factors are given by:

av (αm) =
2
π

(1 − αm),

in(αm) = (
2
π

)2(1 − αm(1 −
π

4
))(1 − αm).

The Laplace transform of the Rosenberg C model is given
by

L(ng′ )(s; αm) =
2
π

(1 − αm)
(

1
1 + ( αmπ s)

2

1 + e−αms

2
(A8)

+
2
π (1 − αm)se−s − e−αms

1 +
( 2
π (1 − αm)s

)2

)

,

and the glottal spectral peak of the generic model is:

fg (αm) =
1

4
√

(1 − αm(1 − π/4))(1 − αm)
,

ag (αm) =
2
π

√

(1 − αm(1 − π/4))(1 − αm).

19



ACTA ACUSTICA UNITED WITH ACUSTICA Doval et al: The spectrum of glottal flow models
Vol. 92 (2006)

A2.4. LF model

The generic GFM of the Liljencrants-Fant (LF) model and
its derivative are

ng (t; αm) =
π/αm

−eansin(π/αm)(a2
n + (π/αm)2)

·
(

1 + eant
(

an
αm
π
sin(πt/αm) − cos(πt/αm)

)

)

, (A9)

ng′ (t; αm) = −ean(t−1) sin(πt/αm)
sin(π/αm)

, (A10)

where an must satisfy the implicit equation ng (1) = 0, i.e.:

1 + ean
(

an
αm
π
sin
( π

αm

)

− cos
( π

αm

))

= 0. (A11)

an is similar to the parameter a of the complete GFM and
the relationship between them is: an = aOqT0.
αm is a free parameter, and the shape factors are given

by:

av (αm) =
π
αm

(1 + eanαm )

−eansin(π/αm)(a2
n + (π/αm)2)

,

in(αm) =
1 − π/αm

ean sin(π/αm)

a2
n + (π/αm)2

.

It must be noted that when αm is lower than 0.65, the nega-
tive peak of the GFM derivative is no longer at time Te and
its amplitude can be very different from −E. For instance,
with αm = 0.55, the negative peak value is −1.8E, and
with αm = 0.51, it increases to −8.1E. This can be impor-
tant for source parameter estimation procedures based on
time-domain estimation of the glottal-flow derivative max-
imum. However the proposed framework can handle the
full αm range (]0.5, 1.0[) as can be seen in figure 14 where
the asymptote remains E/(2πf ) whatever the value of αm.

The Laplace transform of the LF model is given by

L(ng′ )(s; αm) =
se−s − π/αm

sin(π/αm) e−an (1 − e−s)

(an − s)2 + (π/αm)2
, (A12)

and the glottal spectral peak of the generic model is:

fg (αm) =
1

2π

√

√

√

√

a2
n + (π/αm)2

1 − π/αm
ean sin(π/αm)

,

ag (αm) =

√

√

√

√

1 − π/αm
ean sin(π/αm)

a2
n + (π/αm)2

.

The spectral tilt component is computed using the return
phase method.

List of sounds

All the sounds are computed using an LF GFM derivative
filtered by a vowel /a/ filter, except when notified.

Sound 1: LF GFM, then GFM derivative, then GFM
derivative through a vowel filter. F0 = 100, Oq = 0.6,
αm = 2

3 , Qa = 0.
Sound 2: same as sound 1, but with a series of F0 and E

values taken from a natural vowel.
Sound 3, 4, 5: Comparison between models: effect of αm

variation for the C, LF and R++ GFMs (respectively
sounds 3, 4 and 5). αm moves from 0.6 to 0.8 and back
for the C and LF GFMs, and from 0.55 to 0.75 and back
for the R++ GFM. E = 1000, F0 = 130, Oq = 0.6,
Qa = 0.

Sound 6: Effect of E variation (see Figure 13). E moves
from 1000 to 4000 and back, first by steps of 1000 and
then continuously. F0 = 130, Oq = 0.6, αm = 2

3 , Qa =
0.

Sound 7: Effect of Qa variation (see Figure 13). Qa takes
the values 0, 0.05, 0.1, 0.2 and back, and then moves
from 0 to 0.2 and back continuously. AV = 1, F0 =
130, Oq = 0.6, αm = 2

3 .
Sound 8: Effect of αm variation with fixed E (see Fig-

ure 14). αm takes the values 2
3 , 0.7, 0.75, 0.8 and back,

and then moves from 2
3 to 0.8 and back continuously.

E = 1000, F0 = 130, Oq = 0.6, Qa = 0.
Sound 9: Effect of Oq variation with fixed E (see Fig-

ure 14). Oq takes the values 0.8, 0.6, 0.4, 0.2 and back,
and then moves from 0.8 to 0.2 and back continuously.
E = 1000, F0 = 130, αm = 2

3 , Qa = 0.
Sound 10: Effect of αm variation with fixed AV (see Fig-

ure 15). αm takes the values 2
3 , 0.7, 0.75, 0.8 and back,

and then moves from 2
3 to 0.8 and back continuously.

AV = 1, F0 = 130, Oq = 0.6, Qa = 0.
Sound 11: Effect of Oq variation with fixed AV (see Fig-

ure 15). Oq takes the values 0.8, 0.6, 0.4, 0.2 and back,
and then moves from 0.8 to 0.2 and back continuously.
AV = 1, F0 = 130, Oq = 0.6, αm = 2

3 , Qa = 0.

References

[1] G. Fant: Acoustic theory of speech production. Mouton,
The Hague, 1960.

[2] G. Fant, J. Liljencrants, Q. Lin: A four-parameter model of
glottal flow. STL-QPSR 4 (1985) 1–13.

[3] A. E. Rosenberg: Effect of glottal pulse shape on the quality
of natural vowels. J. Acous. Soc. Am. 49 (1971) 583–590.

[4] D. Klatt, L. Klatt: Analysis, synthesis, and perception of
voice quality variations among female and male talkers. J.
Acous. Soc. Am. 87 (1990) 820–857.

[5] R. Veldhuis: A computationally efficient alternative for the
Liljencrants-Fant model and its perceptual evaluation. J.
Acous. Soc. Am. 103 (1998) 566–571.

[6] H. Fujisaki, M. Ljungqvist: Proposal and evaluation of
models for the glottal source waveform. IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, 1986.

[7] H. M. Hanson: Glottal characteristics of female speakers.
Dissertation. Harvard University, 1995.

[8] D. G. Childers, C. K. Lee: Vocal quality factors: Analysis,
synthesis, and perception. J. Acous. Soc. Am. 90 (1991)
2394–2410.

20



Doval et al: The spectrum of glottal flow models ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 92 (2006)

[9] P. Alku, H. Strik, E. Vilkman: Parabolic spectral parameter
- a new method for quantification of the glottal flow. Speech
Communication 22 (1997) 67–79.

[10] L. C. Oliveira: Estimation of source parameters by fre-
quency analysis. Proc. Eurospeech’93, 1993, 99–102.

[11] G. Fant, Q. Lin: Frequency domain interpretation and
derivation of glottal flow parameters. STL-QPSR 2-3
(1988) 1–21.

[12] B. Doval, C. d’Alessandro, B. Diard: Spectral methods for
voice source parameter estimation. Proc. Europseech’97,
Rhodes, Greece, Sept. 1997, 533–536.

[13] G. Fant: Glottal source and excitation analysis. STL-QPSR
1 (1979) 85–107.

[14] T. V. Ananthapadmanabha: Acoustic analysis of voice
source dynamics. STL-QPSR 2-3 (1984) 1–24.

[15] G. Fant: The LF-model revisited. transformations and fre-
quency domain analysis. STL-QPSR 2-3 (1995) 119–156.

[16] N. Henrich, C. d’Alessandro, M. Castellengo, B. Doval: On
the use of the derivative of electroglottographic signals for
characterization of nonpathological phonation. J. Acous.
Soc. Am. 115 (2004) 1321–1332.

[17] I. R. Titze: Theory of glottal airflow and source-filter inter-
action in speaking and singing. Acta Acustica united with
Acustica 90 (2004) 641–648.

[18] N. Henrich, C. d’Alessandro, B. Doval: Spectral correlates
of voice open quotient and glottal flow asymmetry : theory,
limits and experimental data. Eurospeech 2001, Aalborg,
Denmark, Sept. 2001.

[19] N. Henrich: Etude de la source glottique en voix parlée et
chantée : modélisation et estimation, mesures acoustiques
et électroglottographiques, perception (study of the glot-
tal source in speech and singing: modeling and estimation,
acoustic and electroglottographic measurements, percep-
tion). Dissertation. Université Paris 6, France, 2001.

[20] J. D. Markel, A. H. Gray: Linear prediction of speech.
Springer-Verlag, Berlin, 1976.

[21] B. Doval, C. d’Alessandro: The voice source as a causal
/ anticausal linear filter. proc. Voqual’03, Voice Qual-
ity: Functions, analysis and synthesis, ISCA workshop,
Geneva, Switzerland, Aug. 2003, 15–20.

[22] A. Sluijter, V. J. van Heuven, J. J. A. Pacilly: Spectral bal-
ance as a cue in the perception of linguistic stress. J. Acous.
Soc. Am. 101 (1997) 503–513.

[23] B. Doval, C. d’Alessandro: Spectral correlates of glottal
waveform models : an analytic study. IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, Munich, Ger-
many, Apr. 1997, 446–452.

[24] P. Alku, M. Airas, T. Bäckström, H. Pulakka: Using group
delay function to assess glottal flows estimated by inverse
filtering. IEE, Electronics Letters 41 (Apr. 2005).

[25] W. Gardner, B. D. Dao: Non-causal all-pole modelling of
voiced speech. IEEE Trans. On Speech and Audio Proc. 5
(1997) 1–10.

[26] B. Bozkurt: Zeros of z-transform(zzt) representation and
chirp group delay processing for analysis of source and fil-
ter characteristics of speech signals. Dissertation. Univer-
sité Polytechnique de Mons, Belgium and LIMSI-CNRS,
France, 2005.

[27] B. Bozkurt, B. Doval, C. d’Alessandro, T. Dutoit: A method
for glottal formant frequency estimation. 8th Intern. Conf.
on Spoken Language Processing (ICSLP), Jeju Island, Ko-
rea, Okt. 2004.

[28] G. Fant: Preliminaries to analysis of the human voice
source. STL-QPSR 4 (1982) 1–27.

[29] E. B. Holmberg, R. E. Hillman, J. S. Perkell: Glottal air
flow and transglottal air pressure measurements for male
and female speakers in soft, normal and loud voice. J.
Acous. Soc. Am. 84 (1988) 511–529.

[30] J. Gauffin, J. Sundberg: Spectral correlates of glottal voice
source waveform characteristics. J. Speech Hear. Res. 32
(1989) 556–565.

[31] N. Henrich, G. Sundin, D. Ambroise, C. d’Alessandro, M.
Castellengo, B. Doval: Just noticeable differences of open
quotient and asymmetry coefficient in singing voice. J.
Voice (2003).

[32] P. Alku, T. Bäckström, E. Vilkman: Normalized amplitude
quotient for parametrization of the glottal flow. J. Acous.
Soc. Am. 112 (Aug. 2002) 701–710.

[33] E. B. Holmberg, R. E. Hillman, J. S. Perkell, P. C. Guiod,
S. L. Goldman: Comparisons among aerodynamic, elec-
troglottographic, and acoustic spectral measures of female
voice. J. Speech Hear. Res. 38 (1995) 1212–1223.

[34] H. M. Hanson: Glottal characteristics of female speakers :
Acoustic correlates. J. Acous. Soc. Am. 101 (1997) 466–
481.

[35] J. Sundberg, M. Andersson, C. Hultqvist: Effects of sub-
glottal pressure variation on professional baritone singers’
voice sources. J. Acous. Soc. Am. 105 (1999) 1965–1971.

[36] H. M. Hanson, E. S. Chuang: Glottal characteristics of male
speakers : Acoustic correlates and comparison with female
data. J. Acous. Soc. Am. 106 (1999) 1064–1077.

[37] L. C. Oliveira: Text-to-speech synthesis with dynamic con-
trol of source parameters. – In: Progress in Speech Synthe-
sis. J. van Santen, R. Sproat, J. Olive, J. Hirschberg (eds.).
Springer-Verlag, 1996, 27–39.

[38] B. Bozkurt, B. Doval, C. d’Alessandro, T. Dutoit: Zeros of
z-transform representation with application to source-filter
separation in speech. IEEE Signal processing letters 12
(Apr. 2005) 344–347.

[39] B. Bozkurt, B. Doval, C. d’Alessandro, T. Dutoit: Appro-
priate windowing for group delay analysis and roots of z-
transform of speech signals. 12th European Signal Process-
ing Conference (EUSIPCO), Vienna, Austria, Sep. 2004.

[40] C. d’Alessandro, B. Doval: Voice quality modification us-
ing periodic-aperiodic decomposition and spectral process-
ing of the voice source signal. Proc. 3rd Intern. Workshop
on Speech Synthesis, Jenolan Caves, Australia, Nov. 1998,
277–282.

21


